恒等式(identity)
数学上,恒等式是无论其变量如何取值,等式永远成立的算式。
恒等式符号“≡”。
两个解析式之间的一种关系。给定两个解析式,如果对于它们的定义域(见函数)的公共部分(或公共部分的子集)的任一数或数组,都有相等的值,就称这两个解析式是恒等的。例如x^2-y^2与(x+y)(x-y) ,对于任一组实数(a,b),都有a^2-b^2=(a+b)(a-b),所以x^2-y^2与( x+y)(x-y)是恒等的。
两个解析式恒等与否不能脱离指定的数集来谈,因为同样的两个解析式,在一个数集内是恒等的,在另一个数集内可能是不恒等的。例如与x,在非负实数集内是恒等的,而在实数集内是不恒等的。
恒等式符号“≡”
欧拉恒等式:
e^iπ+1=0,e是自然对数的底,π是圆周率,i是虚数单位。它来源于e^ix=cosx+isinx(复数的三角表示),令x=π就得。