请输入您要查询的百科知识:

 

词条 周髀算经
释义

《周髀(bì)算经》乃是算经的十书之一。约成书于公元前1世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用以及怎样引用到天文计算。《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明引。

简介

中国流传至今的一部最早的数学著作,同时也是一部天文学著作。中国古代,按所提出的宇宙模式的不同,天文学共有3家学说,“盖天说”是其中之一,而《周髀算经》是“盖天说”的代表。这派学说主张:天像盖笠,地法覆盆(天空如斗笠,大地像翻扣的盆)。

据考证,现传本《周髀算经》大约成书于西汉时期(公元前1世纪)为赵君卿所作,北周时期甄鸾重述,唐代李淳风等注。历代许多数学家都曾为此书作注,其中最著名的是唐李淳风等人所作的注。《周髀算经》还曾传入朝鲜和日本,在那里也有不少翻刻注释本行世。

从所包含的数学内容来看,书中主要讲述了学习数学的方法、用勾股定理来计算高深远近和比较复杂的分数计算等。

书中有矩(一种量直角、画矩形的工具)的用途,勾股定理及其在测量上的应用,相似直角三角形对应边成比例定理等数学内容.

在《周髀算经》中还有开平方的问题,等差级数的问题,使用了相当繁复的分数算法和开平方法,以及应用于古代的“四分历”计算的相当复杂的分数运算.还有相当繁杂的数字计算和勾股定理的应用。

还有有名的圆周率:3.1415926······

《周髀算经》中勾股定理的公式与证明

首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二)

而勾股定理的证明呢,就在《周髀算经》上卷一 ——

昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”

商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”

周公对古代伏羲(包牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。于是商高以勾股定理的证明为例,解释数学知识的由来。“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。

故折矩①,以为句广三,股修四,径隅五。”:开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五)。

②既方之,外半其一矩,环而共盘,得成三四五。”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。

两矩共长③二十有五,是谓积矩。”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。

注意:① 矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角。古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形。

② “既方之,外半其一矩”此句有争议。清代四库全书版定为“既方其外半之一矩”,而之前版本多为“既方之外半其一矩”。经陈良佐、李国伟、李继闵、曲安京等学者研究,“既方之,外半其一矩”更符合逻辑。

③ 长指的是面积。古代对不同维度的量纲比较,并没有发明新的术语,而统称“长”。赵爽注称:“两矩者, 句股各自乘之实。共长者, 并实之数。

由于年代久远,周公弦图失传,传世版本只印了赵爽弦图(造纸术在汉代才发明)。所以某些学者误以为商高没有证明(只是说了一段莫名其妙的话),后来赵爽才给出证明。

其实不然,摘录赵爽注释《周髀算经》时所做的《勾股圆方图》——“句股各自乘, 并之为弦实, 开方除之即弦。案: 弦图可以句股相乘为朱实二, 倍之为朱实四, 以句股之差自相乘为中黄实, 加差实成弦实。”

注意“案”中的“弦图可以”、“成弦实”,“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明,于是他给出了新的证明。

详细分析请参阅 曲安京《商高、赵爽与刘徽关於勾股定理的证明》。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 5:08:21