词条 | 铀 |
释义 | 铀(Uranium)的原子序数为92的元素,其元素符号是U,是自然界中能够找到的最重元素。在自然界中存在三种同位素,均带有放射性,拥有非常长的半衰期(数亿年~数十亿年)。此外还有12种人工同位素(铀-226~铀-240)。铀在1789年由马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)发现。铀化合物早期用于瓷器的着色,在核裂变现象被发现后用作为核燃料。 元素简介铀(普通话拼音:yóu ;;英语拼写:Uranium),得名于天王星的名字“Uranus”。 致密而有延展性的银白色放射性金属。铀在接近绝对零度时有超导性,有延展性。铀的化学性质活泼,能和所有的非金属作用,能与多种金属形成合金。空气中易氧化,生成一层发暗的氧化膜,能与酸作用,与U-234、U-235、U-238混合体存在于铀矿中。少量存在于独居石等稀土矿石中。铀最初只用做玻璃着色或陶瓷釉料,1938年发现铀核裂变后,开始成为主要的核原料。 外围电子层排布:5f36d17s2。 物理性质 铀是元素周期表中第七周期MB族元素,锕系元素之一,是重要的天然放射性元素,元素符号U,原子序数92,原子量238.0289。在整个元素序列中,大约到铁的位置以后,每个原子核都有分裂的趋势,只是由于闸门阻止着才未分裂。在自然界发现的最后一个元素铀,有最弱的闸门,1936年由哈恩和他的同事斯特拉斯曼在实验中第一次打破的,就是这个元素。铀原子有92个质子和92个电子,其中6个是价电子。铀是银白色金属,熔点1132.5`C,沸点3745℃,密度18.95g/c砰,电阻率30.8X10-8n"m,抗拉强度450MPa,屈服强度207MPa,弹性模数172GPa。铀的热中子吸收截面为7.60b,铀有15种同位素,其原子量从227-240。所有铀同位素皆不稳定,具有微弱放射性。铀的天然同位素组成为:238u(自然丰度99.275%,原子量238.0508,半衰期4.51X109a),235U(自然丰度0.720%,原子量235.0439,半衰期7.00X108a),234U(自然丰度0.005%,原子量234.0409,半衰期2.47X105a)。其中235u是惟一天然可裂变核素,受热中子轰击时吸收一个中子后发生裂变,放出总能量为195MeV,同时放2~3个中子,引发链式核裂变;238U是制取核燃料钚的原料。 化学性质 铀的外电子层构型为[Rn]5f36dl7s2,有+3,+4,+5,+6四种价态,其中+4和+6价化合物稳定。铀的化学性质活泼,能和所有的非金属作用(惰性气体除外),能与多种金属形成合金。空气中易氧化,生成一层发暗的氧化膜,高度粉碎的铀空气中极易自燃,块状铀在空气中易氧化失去金属光泽,在空气中加热即燃烧,铀能与所有非金属反应,250℃下和硫反应,400℃下和氮反应生成氮化物,1250℃下和碳反应生成碳化物,250-300℃下和氢反应生成UH3,UH3在真空350-400℃下分解,放出氢气。铀与卤素反应生成卤化物,铀能与汞、锡、铜、铅、铝、铋、铁、镍、锰、钴、锌、铍作用生成金属间化合物,金属铀缓慢溶于硫酸和磷酸,有氧化剂存在时会加速溶解,铀易溶于硝酸,铀对碱性溶液呈惰性,但有氧化剂存在时,能使铀溶解,铀及其化合物均有较大的毒性,空气中可溶性铀化合物的允许浓度为0.05mg/m3,不溶性铀化合物允许浓度为0.25mg/m3,人体对天然铀的放射性允许剂量,可溶性铀化合物为7400Bq,不溶性铀化合物为333Bq。 基部属性 名称 铀(U) 系列 锕系元素 周期,元素分区 7,f 类型 金属 外表 银白色 太阳中的含量 0.001ppm 海水中的含量 0.00313ppm 发现人 马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)(1789)原子属性 原子量 238.0289 原子半径(计算值) 175 pm 范德华半径 186 pm 离子半径 0.81(+6)埃 氧化态 U+6(U+2,U+3,U+4,U+5) 负电性 1.38(鲍林标度) 核外电子排布 [氡]5f3 6d1 7s2(2-8-18-32-21-9-2) 第一电离能 597.6 KJ/mol 第二电离能 1420 KJ/mol 晶体结构 晶胞为正交晶胞 结晶变体 斜方晶体、四方晶体、体心立方体 晶胞参数 a=285.37pm
性质 固体、放射性、顺磁性 密度 18.95 g/cm^3 熔点 1132.0℃(1405K) 沸点 3818.0℃(4407K) 摩尔体积 12.49 cm^3/mol 汽化热 477 kJ/mol 熔化热 15.48 kJ/mol 声速 3155 m/s(293.15K) 比热 120 J/(kg·K) 电导率 3.8×10^6/(m·Ω) 热导率 27.6 W/(m·K) 其实有不少人把铀认为是自然界最重的金属,锇的密度是22.48g/cm^3,为最重的金属,而钚是天然存在的最大的重核元素。 同位素 地球上存量最多的同位素是铀-238,再者是可用作核能发电的燃料的铀-235,丰度最少的是铀-234。此外还有12种人工同位素(铀-226~铀-240)。 同位素 丰度 半衰期 衰变模式 衰变能量MeV 衰变产物 U-232 人造 68.9年 自发分裂 - -
U-233 人造 159200年 自发分裂 197.93 -
U-234 0.006% 245500年 自发分裂 197.78 -
U-235 0.72% 7.038×10^8年 自发分裂 202.48 -
U-235m 人造 约25分钟 同质异构转变 <1 Kr-92,Ba-141,2个中子 U-236 人造 2.342×10^7年 自发分裂 201.82 -
U-236m 人造 121×10^-9秒 自发分裂 <1 - U-237 人造 6.75日 β衰变 0.519 Np-237 U-238 99.275% 4.468×10^9年 自发分裂 205.87 -
发现过程1789年,由德国化学家克拉普罗特(M.H.Klaproth)从沥青铀矿中分离出,就用1781年新发现的一个行星——天王星命名它为uranium,元素符号定为U。1841年,佩利戈特(E.M.Peligot)指出,克拉普罗特分离出的“铀”,实际上是二氧化铀。他用钾还原四氯化铀,成功地获得了金属铀。1896年有人发现了铀的放射性衰变。1939年,哈恩(O.Hahn)和斯特拉斯曼(F.Strassmann)发现了铀的核裂变现象。自此以后,铀便变得身价百倍。 分布范围铀通常被人们认为是一种稀有金属,尽管铀在地壳中的含量很高,比汞、铋、银要多得多,但由于提取铀的难度较大,所以它注定了要比汞这些元素发现的晚得多。尽管铀在地壳中分布广泛,但是只有沥青铀矿和钾钒铀矿两种常见的矿床。 地壳中铀的平均含量约为百万分之2.5,即平均每吨地壳物质中约含2.5克铀,这比钨、汞、金、银等元素的含量还高。铀在各种岩石中的含量很不均匀。例如在花岗岩中的含量就要高些,平均每吨含3.5克铀。在地壳的第一层(距地表 20 km)内含铀近 1.3×10^14 吨。依此推算,一立方公里的花岗岩就会含有约一万吨铀。海水中铀的浓度相当低,每吨海水平均只含3.3毫克铀,但由于海水总量极大(海水中总含铀量可达 4.5×10^9 吨),且从水中提取有其方便之处,所以目前不少国家,特别是那些缺少铀矿资源的国家,正在探索海水提铀的方法。 由于铀的化学性质很活泼,所以自然界不存在游离的金属铀,它总是以化合状态存在着。已知的铀矿物有一百七十多种,但具有工业开采价值的铀矿只有二、三十种,其中最重要的有沥青铀矿(主要成分为八氧化三铀))、品质铀矿(二氧化铀)、铀石和铀黑等。很多的铀矿物都呈黄色、绿色或黄绿色。有些铀矿物在紫外线下能发出强烈的荧光。正是铀矿物(铀化合物)这种发荧光的特性,才导致了放射性现象的发现。 虽然铀元素的分布相当广,但铀矿床的分布却很有限。铀资源主要分布在美国、加拿大、南非、西南非、澳大利亚等国家和地区。据估计,已探明的工业储量到1972年已超过一百万吨。中国铀矿资源也十分丰富。 铀及其一系列衰变子体的放射性是存在铀的最好标志。人的肉眼虽然看不见放射性,但是借助于专门的仪器却可以方便地把它探测出来。因此,铀矿资源的普查和勘探几乎都利用了铀具有放射性这一特点:若发现某个地区岩石、土壤、水、甚至植物内放射性特别强,就说明那个地区可能有铀矿存在。 提取纯化从铀矿石中提取铀直到制成核纯(见放射性核素纯度)铀化合物的工艺过程,是天然铀生产的重要步骤。主要产品有重铀酸铵(俗称黄饼)和三碳酸铀酰铵等。纯化(又称精制)后的铀化合物产品,必须达到核纯的要求。精制的产品进一步干燥、煅烧,加工成二氧化铀或八氧化三铀,供制作反应堆元件或六氟化铀(用于U-235的同位素分离)用。整个过程须经下述单元操作:铀矿石的破碎和磨细、铀矿石的浸取、矿浆的固液分离、离子交换和溶剂萃取法提取铀浓缩物、溶剂萃取法纯化铀浓缩物。可根据矿石种类、产品要求等不同情况,选择由上述单元操作所组成的适当流程。 破碎和磨细 破碎是将矿石经颚式破碎机、圆维破碎机或锤式破碎机粗碎、中碎和细碎以达到所要求的力度。然后进行细磨,以达到浸取工序所要求的粒度。 浸取 用溶剂将矿石中的铀选择性地溶解。铀矿石经浸取后,铀与大部分脉石分离,浸取液中铀与杂质的比例比原矿石中约提高10~30倍,因此,浸取过程也是铀与杂质初步分离的过程。 铀矿石浸取方法一般有酸法和碱法两种。多数铀水冶厂采用酸浸取法,少数厂用碱浸取法,只有个别厂同时采用酸、碱两种浸取流程。酸浸取法一般用硫酸作浸取剂,矿石中的铀和硫酸反应,生成可溶的铀酰离子UO2和硫酸铀酰离子[UO2(SO4)x;浸取时常加入氧化剂(常用二氧化锰、氯酸钠),以保持适宜的氧化还原电势(约450毫伏),使四价铀氧化成六价,以提高铀的浸出率。含碳酸盐的铀矿石主要用碱法浸取,常用的浸取剂为碳酸钠和碳酸氢钠的水溶液,在鼓入空气的条件下,矿石中的铀与碳酸钠生成碳酸铀酰钠Na4[UO2(CO3)3],溶于浸取液。 矿浆的固液分离 矿石浸取后所得到的酸性或碱性矿浆(包括含铀溶液、部分杂质及固体矿渣)中的溶液和矿渣须经分离。根据需要也可进行粗矿分级,以除去+200~40目的粗砂,得到细泥矿浆。常用的固液分离设备有过滤机、沉降槽(浓密机);分级设备有螺旋分级机、水力旋流器。中国还采用流态化塔进行分级和洗涤。 分离出的溶液可用离子交换法分离铀,也可用溶剂萃取法分离和纯化铀,或将铀从含铀溶液中沉淀出来。 离子交换法提取铀 固液分离后的浸取液中八氧化三铀的含量大致为500~1000毫克/升。对于含铀浓度低的浸取液采用离子交换法提取铀较为合宜。离子交换法一般采用强碱性阴离子交换树脂吸附铀。按吸附液含固量的多少,吸附可分为清液吸附、混浊液吸附和矿浆吸附。当树脂吸咐饱和后,经水洗,再用淋洗剂(硫酸-氯化钠、硫酸-氯化铵、硝酸-硝酸钠、硝酸-硝酸铵、稀硫酸或稀硝酸)将铀从树脂上淋洗下来。 萃取法提取和精制铀 铀水冶厂处理的溶液是体积大、铀浓度低、杂质含量高的稀溶液,须将铀与杂质分离并初步使铀浓缩,而在精制工艺中,处理的是高浓度的含铀溶液,产品质量要求达到核纯。在铀的萃取工艺中常用的有机膦与烷基胺类萃取剂有磷酸三丁酯(TBP)、二(2-乙基己基)磷酸、三辛胺等。 在铀水冶厂,硫酸体系的萃取多采用磷类和胺类两种萃取工艺(碱性体系的萃取常用季铵盐萃取工艺),如烷基膦萃取工艺和胺类萃取工艺流程,后者在世界上应用较多。中国应用较多的是淋萃流程。吸附铀的饱和树脂,用1mol/L的硫酸淋洗,随后对此淋洗液进行萃取。例如淋萃流程所用的萃取剂是0.2mol/L的二(2-乙基己基)磷酸—0.1mol/L的三烷基氧膦体系。有机相的饱和度控制在85%以上,经水洗后,用碳酸铵结晶反萃取,可得核纯三碳酸铀酰。此流程中淋洗与萃取结合,使萃取所处理的液量减少,金属回收率高,节省试剂,产品纯度也高。 铀水冶厂生产的产品一般为工业铀浓缩物,仍含有硫酸盐、硅、钙、镁等杂质,须进一步精制,才能得到核纯产品。精制过程中最常用的是TBP萃取工艺,TBP对铀饱和容量大,可处理含铀量高的溶液,在有机相接近饱和的条件下,对杂质元素有较高的净化能力。 从含铀溶液中沉淀铀 在浸取所得溶液中,也可将铀以不溶性化合物的状态分离出来;并可通过对沉淀物的多次溶解及再沉淀而进行纯化。主要有碱中和法和过氧化氢沉淀法: 碱中和法 将碱性沉淀剂如氨水、氧化镁、气态氨等加入到酸性含铀溶液中,并控制最终pH值为6.5~8.0,铀以重铀酸盐形式完全沉淀出来。对碱性浸取液主要采用氢氧化钠沉淀剂,得铀酸钠或重铀酸钠沉淀。如果从纯化过的酸性溶液中沉淀铀,则其沉淀物重铀酸铵的纯度较高。 过氧化氢沉淀法 将含铀溶液的pH调至2.5~4.0,缓慢加入比化学计算量过量的30%过氧化氢,再加入适量的氨水,以中和反应过程生成的酸,使最终pH值达2.8,生成铀的过氧化物(UO4·xH2O)沉淀。过氧化氢沉淀法对铀选择性高,并可获得晶状、易处理的产品,也具有工业意义。 主要用途在居里夫妇发现镭以后,由于镭具有治疗癌症的特殊功效,镭的需要量不断增加,因此许多国家开始从沥青铀矿中提炼镭,而提炼过镭的含铀矿渣就堆在一边,成了“废料”。然而,铀核裂变现象发现后,铀变成了最重要的元素之一。这些“废料”也就成了“宝贝”。从此,铀的开采工业大大地发展起来,并迅速地建立起了独立完整的原子能工业体系。 浓缩铀技术纯度为3%的U-235为核电站发电用低浓缩铀,U-235纯度大于80%的铀为高浓缩铀,其中纯度大于90%的称为武器级高浓缩铀,主要用于制造核武器。获得铀是非常复杂的系列工艺,要经过探矿、开矿、选矿、浸矿、炼矿、精炼等流程,而浓缩分离是其中最后的流程,需要很高的科技水平。获得1公斤武器级U-235需要200吨铀矿石。 由于涉及核武器问题,铀浓缩技术是国际社会严禁扩散的敏感技术。目前除了几个核大国之外,日本、德国、印度、巴基斯坦、阿根廷等国家都掌握了铀浓缩技术。 提炼浓缩铀方法主要有气体扩散法和气体离心法。 气体扩散法: 使待分离的气体混合物流入装有扩散膜(分离膜)的装置来得到富集和贫化的两股流的同位素分离方法。基本原理是:在分子间的相互碰撞忽略不计的情况下,气体混合物中质量不同的气体分子 (例如235UF6和238UF6)的平均热运动速率与其质量二次方根成反比。当气体通过扩散膜时,速率大的轻分子(235UF6)通过的几率比速率小的重分子(238UF6)的大。这样,通过膜以后,轻分子的含量就会提高,从而达到同位素分离的目的。 第二次世界大战结束后,美国的实践证明,气体扩散法能够用来大规模生产铀 235。它是目前最成熟的大规模分离铀同位素的方法,是对各种新的浓缩方法的大规模商业应用的挑战,是比较各种方法的基本点。美国和法国大型气体扩散工厂的分离功率达1万吨/年以上,比能耗均在 2400千瓦·时/千克左右。气体扩散法的缺点是分离系数小,工厂规模大,耗电量惊人,成本很高。 气体离心法: 气体离心分离机是其中的关键设备。铀原料放置于离心机中央反应室内,离心机以7-8万转/分钟的速度旋转。较重的U-238原子逐渐靠近离心机的边缘,而较轻的U-235则保留在离心机中心部位。结晶U-235被称为“富铀”(浓缩铀),其余的“贫铀”则被丢弃。仅靠单个离心机一次分离是远远不够的,必须通过更多离心机加工,才可以分离提纯。这些离心机以“级联配置”联接一体。因而,“级联配置”成为核物质用途的又一重要线索。铀在一级离心机提纯后,会转送到下一级离心机继续提纯,级级相连。由于核电站所需铀浓缩较低,其离心机级联层次较少,因而看起来会比较短。而用作核武器的铀浓度要达到90%以上,其离心机层次更多,级联配置自然显得又细又长。 美国等国家通常把拥有该设备作为判断一个国家是否进行核武器研究的标准。核电站核反应堆只需3%~5%的U-235,而要生产核武器,U-235浓度至少要达到90%。如果发现某个国家的U-235浓度达到90%,这就是企图制造核武器的铁证。 原子弹使用常规炸药有规律的安放在铀的周围,然后使用电子雷管使这些炸药精确的同时爆炸,产生的巨大压力将铀压到一起,并被压缩,达到临界条件,发生爆炸。或者将两块总质量超过临界质量的铀块合到一起,也会发生猛烈的爆炸。 临界质量是指维持核子连锁反应所需的裂变材料质量。不同的可裂变材料,受核子的性质(如裂变横切面)、物理性质、物料形状、纯度、是否被中子反射物料包围、是否有中子吸收物料等等因素影响,而会有不同的临界质量。 刚好可能以产生连锁反应的组合,称为已达临界点。比这样更多质量的组合,核反应的速率会以指数增长,称为超临界。如果组合能够在没有延迟放出中子之下进行连锁反应,这种临界被称为即发临界,是超临界的一种。即发临界组合会产生核爆炸。如果组合比临界点小,裂变会随时间减少,称之为次临界。 核子武器在引爆以前必须维持在次临界。以铀核弹为例,可以把铀分成数大块,每块质量维持在临界以下。引爆时把铀块迅速结合。投掷在广岛的“小男孩”原子弹是把一小块的铀透过枪管射向另一大块铀上,造成足够的质量。这种设计称为“枪式”。 钚核弹不能以这种方法引爆。 第一枚钚原子弹胖子是内爆式钚弹。处于低临界的球形钚,被放置在空心的球状炸药内。周围接上了三十二枚同时起爆的雷管。雷管接通起爆后,产生强大的内推压力,挤压球形钚。当钚的密度增加至超临界状况,引发起核子连锁反应,造成核爆。胖子不能使用“小男孩”铀弹一类的“枪式”起爆。因为钚的自发中子比铀多很多。如果好像枪式铀弹一样将数块钚结合,连锁反应会在裂变物料刚刚到达超临界时立即开始;产生的能量会把其余大量尚未进行裂变的材料炸开,造成释放能量大为下降的“提前起爆”(Fizzle)。理论上要以“枪式”起爆钚弹并非不可能,但是炸弹可能需要长达十九英尺,这种设计超越当时B-29的载负能力所以不可取。 由于内爆式钚弹是一种崭新的设计,因此美国在使用前,先在1945年7月16日新墨西哥州试爆了另一枚同一模式,称为“小玩意”(Gadget)的原子弹。结果试验非常成功,得到的当量达二万公吨,比原先预计高出二至四倍。
|