词条 | 锁相放大器 |
释义 | 放大器的分类(1.通用型集成运算放大器 2.高精度集成运算放大器 3.高速型集成运算放大器 4.高输入阻抗集成运算放大器 5.低功耗集成运算放大器 6.宽频带集成运算放大器 7.高压型集成运算放大器 8.功率型集成运算放大器 9.光纤放大器) 百科名片锁相放大器是一种对交变信号进行相敏检波的放大器。它利用和被测信号有相同频率和相位关系的参考信号作为比较基准,只对被测信号本身和那些与参考信号同频(或者倍频)、同相的噪声分量有响应。因此,能大幅度抑制无用噪声,改善检测信噪比。此外,锁相放大器有很高的检测灵敏度,信号处理比较简单,是弱光信号检测的一种有效方法。 锁相放大器的历史发展1962年美国EG&G PARC(SIGNAL RECOVERY公司的前身) 的第一台锁相放大器(Lock-in Amplifier,简称LIA)的发明,使微弱信号检测技术得到标志性的突破,极大地推动了基础科学和工程技术的发展。目前,微弱信号检测技术和仪器的不断进步,已经在很多科学和技术领域中得到广泛的应用,未来科学研究不仅对微弱信号检测技术提出更高的要求,同时新的科学技术发展反过来促进了微弱信号检测新原理和新方法的诞生。 早期的LIA是由模拟电路实现的,随着数字技术的发展,出现了模拟与数字混合的LIA,这种LIA只是在信号输入通道,参考信号通道和输出通道采用了数字滤波器来抑制噪声,或者在模拟锁相放大器(简称ALIA)的基础上多了一些模数转换(ADC)、数模转换(DAC)和各种通用数字接口功能,可以实现由计算机控制、监视和显示等辅助功能,但其核心相敏检波器(PSD)或解调器仍是采用模拟电子技术实现的,本质上也是ALIA。直到相敏检波器或解调器用数字信号处理的方式实现后,就出现了数字锁相放大器(简称DLIA),DLIA比ALIA有许多突出的优点而倍受青睐,成为现在微弱信号检测研究的热点,但是在一些特殊的场合中,ALIA仍然发挥着DLIA不可替代的作用。 锁相放大器的基本结构输入待测信号,经放大和带通滤波后与参考信号共同输入混频器得到的结果再通过低通滤波器滤波后输出。 锁相放大器的原理锁相放大器实际上是一个模拟的傅立叶变换器,锁相放大器的输出是一个直流电压,正比于是输入信号中某一特定频率(参数输入频率)的信号幅值。而输入信号中的其他频率成分将不能对输出电压构成任何贡献。 两个正弦信号,频率都为1Hz,有90度相位差,用乘法器相乘得到的结果是一个有直流偏量的正弦信号。 如果是一个1Hz和一个1.1Hz的信号相乘,用乘法器相乘得到的结果是轮廓为正弦的调制信号,直流偏量为0。 只有与参考信号频率完全一致的信号才能在乘法器输出端得到直流偏量,其他信号在输出端都是交流信号。如果在乘法器的输出端加一个低通滤波器,那么所有的交流信号分量全部被滤掉,剩下的直流分量就只是正比于输入信号中的特定频率的信号分量的幅值。 锁相放大器的用途主要用于检测信噪比很低的微弱信号。即使有用的信号被淹没在噪声信号里面,即使噪声信号比有用的信号大很多,只要知道有用的信号的频率值,就能准确地测量出这个信号的幅值。 锁相放大器的作用1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。 原理: 高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。 高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在 “低频电子线路”课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于 180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 2、画图的时候,放大或缩小图形的用具。也叫放大尺。 放大器的分类集成运算放大器主要类别 下面对不同特性的集成运算放大器进行介绍。 1.通用型集成运算放大器通用型集成运算放大器是指它的技术参数比较适中,可满足大多数情况下的使用要求。通用型集成运算放大器又分为Ⅰ型、Ⅱ型和Ⅲ型,其中Ⅰ型属低增益运算放大器,Ⅱ型属中增益运算放大器,Ⅲ型为高增益运算放大器。Ⅰ型和Ⅱ型基本上是早期的产品,其输入失调电压在2mV左右,开环增益一般大于80dB。 2.高精度集成运算放大器高精度集成运算放大器是指那些失调电压小,温度漂移非常小,以及增益、共模抑制比非常高的运算放大器。这类运算放大器的噪声也比较小。其中单片高精度集成运算放大器的失调电压可小到几微伏,温度漂移小到几十微伏每摄氏度。 3.高速型集成运算放大器高速型集成运算放大器的输出电压转换速率很大,有的可达2~3kV/μS。 4.高输入阻抗集成运算放大器高输入阻抗集成运算放大器的输入阻抗十分大,输入电流非常小。这类运算放大器的输入级往往采用MOS管。 5.低功耗集成运算放大器低功耗集成运算放大器工作时的电流非常小,电源电压也很低,整个运算放大器的功耗仅为几十微瓦。这类集成运算放大器多用于便携式电子产品中。 6.宽频带集成运算放大器宽频带集成运算放大器的频带很宽,其单位增益带宽可达千兆赫以上,往往用于宽频带放大电路中。 7.高压型集成运算放大器一般集成运算放大器的供电电压在15V以下,而高压型集成运算放大器的供电电压可达数十伏。 8.功率型集成运算放大器功率型集成运算放大器的输出级,可向负载提供比较大的功率输出。 9.光纤放大器光纤放大器不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了衰减对光网络传输速率与距离的限制,更重要的是它开创了1550nm频段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。在目前实用化的光纤放大器中主要有掺铒光纤放大器(EDFA)、半导体光放大器(SOA)和光纤拉曼放大器(FRA)等,其中掺铒光纤放大器以其优越的性能现已广泛应用于长距离、大容量、高速率的光纤通信系统、接入网、光纤CATV网、军用系统(雷达多路数据复接、数据传输、制导等)等领域,作为功率放大器、中继放大器和前置放大器。 光纤放大器一般都由增益介质、泵浦光和输入输出耦合结构组成。目前光纤放大器主要有掺铒光纤放大器、半导体光放大器和光纤拉曼放大器三种,根据其在光纤网络中的应用,光纤放大器主要有三种不同的用途:在发射机侧用作功率放大器以提高发射机的功率;在接收机之前作光预放大器以极大地提高光接收机的灵敏度;在光纤传输线路中作中继放大器以补偿光纤传输损耗,延长传输距离。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。