词条 | 迭代 |
释义 | 在RUP中,迭代被定义为:迭代包括产生产品发布(稳定、可执行的产品版本)的全部开发活动和要使用该发布必需的所有其他外围元素。 迭代相关概念迭代函数在数学中,迭代函数是在碎形和动力系统中深入研究的对象。迭代函数是重复的与自身复合的函数,这个过程叫做迭代。 迭代模型迭代模型是RUP(Rational Unified Process,统一软件开发过程,统一软件过程)推荐的周期模型。 迭代算法迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。 RUP中的迭代模型理解如果认为这个解释难以理解,可以这样想: 我们开发一个产品,如果不太复杂,会采用瀑布模型,简单的说就是先定义需求,然后构建框架,然后写代码,然后测试,最后发布一个产品。 这样,几个月过去了,直到最后一天发布时,大家才能见到一个产品。 这样的方式有明显的缺点,假如我们对用户的需求判断的不是很准确时——这是很常见的问题,一点也不少见——你工作了几个月甚至是几年,当你把产品拿给客户看时,客户往往会大吃一惊,这就是我要的东西吗? 方法迭代的方式就有所不同,假如这个产品要求6个月交货,我在第一个月就会拿出一个产品来,当然,这个产品会很不完善,会有很多功能还没有添加进去,bug很多,还不稳定,但客户看了以后,会提出更详细的修改意见,这样,你就知道自己距离客户的需求有多远,我回家以后,再花一个月,在上个月所作的需求分析、框架设计、代码、测试等等的基础上,进一步改进,又拿出一个更完善的产品来,给客户看,让他们提意见。 就这样,我的产品在功能上、质量上都能够逐渐逼近客户的要求,不会出现我花了大量心血后,直到最后发布之时才发现根本不是客户要的东西的情况。 优势这样的方法很不错,但他也有自己的缺陷,那就是周期长、成本很高。在应付大项目、高风险项目——就比如是航天飞机的控制系统时,迭代的成本比项目失败的风险成本低得多,用这种方式明显有优势。 如果你是给自己的单位开发一个小MIS,自己也比较清楚需求,工期上也不过花上个把月的时间,用迭代就有点杀鸡用了牛刀,那还是瀑布模型更管用,即使是做得不对,顶多再花一个月重来,没什么了不起。 程序设计中的迭代算法有些国外的教材,如《C++ Primer》第四版的中文版,会把iterative翻译成迭代。 iterative是反复的意思,所以,有时候,迭代也会指循环执行,反复执行的意思。 迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。 利用迭代算法解决问题,需要做好以下三个方面的工作: 第一确定迭代变量在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 第二建立迭代关系式所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。 第三对迭代过程进行控制在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。 例 1 : 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只? 分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有 以下是引用片段: u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,…… 根据这个规律,可以归纳出下面的递推公式: 以下是引用片段: u n = (u n - 1) × 2 (n ≥ 2) 对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系: 以下是引用片段: y=x*2 x=y 让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下: 以下是引用片段: cls x=1 for i=2 to 12 y=x*2 x=y next i print y end 例 2 : 阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 2 20 个。试问,开始的时候往容器内放了多少个阿米巴?请编程序算出。 分析: 根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴 2 20 个”,即阿米巴分裂 15 次以后得到的个数是 2 20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2 20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。 设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有 以下是引用片段: x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1) 因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式: x=x/2 ( x 的初值为第 15 次分裂之后的个数 2 20 ) 让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下: 以下是引用片段: cls x=2^20 for i=1 to 15 x=x/2 next i print x end 例 3 : 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。 要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。 分析: 定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1 。用 QBASIC 语言把它描述出来就是: 以下是引用片段: if n 为偶数 then n=n/2 else n=n*3+1 end if 这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为: n=1 。参考程序如下: 以下是引用片段: cls input "Please input n=";n do until n=1 if n mod 2=0 then rem 如果 n 为偶数,则调用迭代公式 n=n/2 n=n/2 print "—";n; else n=n*3+1 print "—";n; end if loop end 求方程根的迭代函数迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: (1) 选一个方程的近似根,赋给变量x0; (2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0; (3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。 若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为: 【算法】迭代法求方程的根 以下是引用片段: { x0=初始近似根; do { x1=x0; x0=g(x1); /*按特定的方程计算新的近似根*/ } while ( fabs(x0-x1)>Epsilon); printf(“方程的近似根是%f\”,x0); } 迭代算法也常用于求方程组的根,令 X=(x0,x1,…,xn-1) 设方程组为: xi=gi(X) (I=0,1,…,n-1) 则求方程组根的迭代算法可描述如下: 【算法】迭代法求方程组的根 以下是引用片段: { for (i=0;i x=初始近似根; do { for (i=0;i y=x; for (i=0;i x=gi(X); for (delta=0.0,i=0;i if (fabs(y-x)>delta) delta=fabs(y-x); } while (delta>Epsilon); for (i=0;i printf(“变量x[%d]的近似根是 %f”,I,x); printf(“\”); } 具体使用迭代法求根时应注意以下两种可能发生的情况: (1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制; (2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。 |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。