词条 | 卡当公式 |
释义 | 卡当公式 三次方程解法被称为“卡尔达诺公式”或“卡当公式”也称为“卡尔丹公式”流传开来.卡尔达诺公布的解法可简述如下: 方程 x^3+px=q(p,q为正数). (1) 卡尔达诺以方程x3+6x=20为例说明这一方法,他得到的解是x=过同样的程序得到他还求出x^3+px+q=0和x^3+q=px(p,q为正数)的公式解,就是说他已经能解任何形式的三次方程了.毫无疑问,这里包含了塔尔塔利亚的工作.但需要说明的是,他们像当时其他数学家一样,解方程只求正根,所以解法还是不完善的.管会受到多大的良心的责备”,把这两个根相乘,会得25-(-15)=40.于是他写道:“算术就是这样神秘地搞下去的,它的目标,正如常言所说,是又精致又不中用的.”他既承认负数有平方根,又怀疑它的合法性,因此称它为“诡变量”.但不管怎样,虚数毕竟在卡尔达诺那里诞生了.他还进一步指出,方程(指实系数方程)的虚根是成对出现的. 三次方程成功地解出之后,卡尔达诺的学生费拉里(L.Ferrari,1522—1565)受到启发,很快解出了四次方程,解法也发表在卡尔达诺《大术》中.下面用现代符号表出. 设方程为x^4+bx^3+cx^2+dx+e=0. (4) 移项,得x^4+bx^3=-cx^2-dx-e, 右边为x的二次三项式,若判别式为0,则可配成x的完全平方.解这个三次方程,设它的一个根为y0,代入(5),由于两边都是x的完全平方形式,取平方根,即得 解这两个关于x的二次方程,便可得到(4)的四个根.显然,若把(6)的其他根代入(5),会得出不同的方程,但结果是一样的. 在卡尔达诺之后,韦达对三次方程和四次方程解法作了进一步改进.1591年发表的《分析术引论》(Inartemanalyticemisagoge)中,他是这样解三次方程的: 对于 x3+bx^2+cx+d=0, 结果得到简约三次方程 y^3+py+q=0 他和卡尔达诺一样,只考虑方程的正根. 韦达不仅研究方程解法,还努力寻找方程的根与系数的关系,在《论方程的识别与修正》(Deaequationumrecog-nitoneetemendatjone,写于1591年,出版于1615年)中,他提出了四个定理,后人为了纪念这位大数学家,称之为韦达定理.二次方程的韦达定理是我们经常使用的,就 对方程理论作出重要贡献的另一位数学家是笛卡儿.他承认方程的负根,并研究了多项式方程的正根和负根个数的规律,得到著名的笛卡儿符号法则:多项式方程f(x)=0的正根个数等于方程系数的变号次数,或比此数少一正偶数;负根个数等于f(-x)的系数的变号次数,或少于此数一个正偶数.在这里,m重根是看作m个根的.实际上,正根个数和负根个数都可表成n-2p的形式,其中n是f(x)或f(-x)的系数变号次数,p为0,1,2…,p的取值要使n-2p非负.笛卡儿还研究了方程的根的个数同方程次数的关系,认为n次方程至多有n个根.在讨论三次方程时,他得到如下结论:若一有理系数三次方程有一个有理根,则此方程可表为有理系数因子的乘积.他的另一项重要成果是现今所谓因子定理:f(x)能为(x-a)整除(a>0),当且仅当a是f(x)=0的一个根,所有这些成就都是在笛卡儿《方法论》(DiscoursdelaMéthod,1637)的附录《几何》(LaGéometrie)中出现的. 除了方程以外,二项式定理的发现也在代数史上占有一席之地.实际上,指数为正整数的二项式定理(即(a+b)n在n为正整数时的展开式)曾被不同民族多次独立发现.11世纪的中国人贾宪和15世纪的阿拉伯数学家卡西(al-Kāshī)各自得到如下形式的三角形 这个三角形特点是,左右两行的数都是1,中间每个数为肩上两数之和. 在欧洲,德国数学家阿皮安努斯(P.Apianus,1495—1552)最早给出这个三角形(1527年),1544年左右,施蒂费尔引入“二项式系数”这个名称,并指出怎样从(1+a)n-1来计算(1+a)n.1653年,帕斯卡写成《算术三角形》(Traitédutrianglearithmétique)一书,从上述三角形出发,详细讨论了二项展开式的系数.该书于1665年出版后,影响很大.由于帕斯卡在数学界的威望,人们习惯地称此三角形为帕斯卡三角形.实际上,他的功绩主要是通过组合公式给出了二项式系数,即牛顿(T.Newton,1643—1727)进一步认识到,这个公式不仅适用于指数为正整数的二项展开式,而且当指数为分数或负数时,同样适用.他把二项式定理推广到分指数和负指数的情形,指出这三种形式的二项展开式第1项都是1,后面各项系数及字母指数也具有相同的变化规律:设n,m为正整数,则三次方程解法被称为“卡尔达诺公式”或“卡当公式”、“卡尔丹公式”流传开来.卡尔达诺公布的解法可简述如下: 方程 x^3+px=q(p,q为正数). (1) 卡尔达诺以方程x^3+6x=20为例说明这一方法,他得到的解是x=过同样的程序得到他还求出x^3+px+q=0和x^3+q=px(p,q为正数)的公式解,就是说他已经能解任何形式的三次方程了.毫无疑问,这里包含了塔尔塔利亚的工作.但需要说明的是,他们像当时其他数学家一样,解方程只求正根,所以解法还是不完善的.管会受到多大的良心的责备”,把这两个根相乘,会得25-(-15)=40.于是他写道:“算术就是这样神秘地搞下去的,它的目标,正如常言所说,是又精致又不中用的.”他既承认负数有平方根,又怀疑它的合法性,因此称它为“诡变量”.但不管怎样,虚数毕竟在卡尔达诺那里诞生了.他还进一步指出,方程(指实系数方程)的虚根是成对出现的. 三次方程成功地解出之后,卡尔达诺的学生费拉里(L.Ferrari,1522—1565)受到启发,很快解出了四次方程,解法也发表在卡尔达诺《大术》中.下面用现代符号表出. 设方程为x^4+bx^3+cx^2+dx+e=0. (4) 移项,得x^4+bx^3=-cx^2-dx-e, 右边为x的二次三项式,若判别式为0,则可配成x的完全平方.解这个三次方程,设它的一个根为y0,代入(5),由于两边都是x的完全平方形式,取平方根,即得 解这两个关于x的二次方程,便可得到(4)的四个根.显然,若把(6)的其他根代入(5),会得出不同的方程,但结果是一样的. 在卡尔达诺之后,韦达对三次方程和四次方程解法作了进一步改进.1591年发表的《分析术引论》(Inartemanalyticemisagoge)中,他是这样解三次方程的: 对于 x^3+bx^2+cx+d=0, 结果得到简约三次方程 y^3+py+q=0 他和卡尔达诺一样,只考虑方程的正根. 韦达不仅研究方程解法,还努力寻找方程的根与系数的关系,在《论方程的识别与修正》(Deaequationumrecog-nitoneetemendatjone,写于1591年,出版于1615年)中,他提出了四个定理,后人为了纪念这位大数学家,称之为韦达定理.二次方程的韦达定理是我们经常使用的,就 对方程理论作出重要贡献的另一位数学家是笛卡儿.他承认方程的负根,并研究了多项式方程的正根和负根个数的规律,得到著名的笛卡儿符号法则:多项式方程f(x)=0的正根个数等于方程系数的变号次数,或比此数少一正偶数;负根个数等于f(-x)的系数的变号次数,或少于此数一个正偶数.在这里,m重根是看作m个根的.实际上,正根个数和负根个数都可表成n-2p的形式,其中n是f(x)或f(-x)的系数变号次数,p为0,1,2…,p的取值要使n-2p非负.笛卡儿还研究了方程的根的个数同方程次数的关系,认为n次方程至多有n个根.在讨论三次方程时,他得到如下结论:若一有理系数三次方程有一个有理根,则此方程可表为有理系数因子的乘积.他的另一项重要成果是现今所谓因子定理:f(x)能为(x-a)整除(a>0),当且仅当a是f(x)=0的一个根,所有这些成就都是在笛卡儿《方法论》(DiscoursdelaMéthod,1637)的附录《几何》(LaGéometrie)中出现的. 除了方程以外,二项式定理的发现也在代数史上占有一席之地.实际上,指数为正整数的二项式定理(即(a+b)n在n为正整数时的展开式)曾被不同民族多次独立发现.11世纪的中国人贾宪和15世纪的阿拉伯数学家卡西(al-Kāshī)各自得到如下形式的三角形 这个三角形特点是,左右两行的数都是1,中间每个数为肩上两数之和. 在欧洲,德国数学家阿皮安努斯(P.Apianus,1495—1552)最早给出这个三角形(1527年),1544年左右,施蒂费尔引入“二项式系数”这个名称,并指出怎样从(1+a)n-1来计算(1+a)n.1653年,帕斯卡写成《算术三角形》(Traitédutrianglearithmétique)一书,从上述三角形出发,详细讨论了二项展开式的系数.该书于1665年出版后,影响很大.由于帕斯卡在数学界的威望,人们习惯地称此三角形为帕斯卡三角形.实际上,他的功绩主要是通过组合公式给出了二项式系数,即牛顿(T.Newton,1643—1727)进一步认识到,这个公式不仅适用于指数为正整数的二项展开式,而且当指数为分数或负数时,同样适用.他把二项式定理推广到分指数和负指数的情形,指出这三种形式的二项展开式第1项都是1,后面各项系数及字母指数也具有相同的变化规律:设n,m为正整数 “卡当公式”的一般推导缺项的一元三次方程的一般解法,最早为意大利数学家费罗发现。后来当时的另一位著名的数学家塔尔塔利亚也在与费罗的学生菲奥尔竞赛中发现这一方法,并再米兰的卡尔达诺一再恳求下,塔尔塔利亚通过诗的形式将解法告知了卡尔达诺。卡尔达诺鉴于这一发现对当时数学的发展重要意义,最终背弃了对塔尔塔利亚许下的保守解法的誓言,于1545年发表于自己的著作《大术》之中。尽管围绕一元三次方程解法中还存在着一些道德观上的争论,但我们不能否认卡尔达诺的贡献。卡尔达诺在大术不仅给予了公式解,还进行了几何意义上的证明。卡尔达诺几何意义上的证明是利用不断逼近方体的体积来实现的。因此,在此处笔者将利用公式缺项处理,对该公式做一推导。 由一元三次方程的完整式X3+a1X2+a2X+a3=0 (1) 和缺项式X3+pX+q=0 (2)可知, 欲将式 (1)转换为式 (2), 需令y=X-a1/3代入式 (1), 得(X-a1/3)3+a1(X-a1/3)2+…=0, 化简后,其中含X2的项已经抵消,这样就将问题化为了式(2)的形式了。 令X=u+v,于是将其代入式(2)中, 则(u+v)3+p(u+v)+q=0 (3), 化简易得(u3+v3)+q+(u+v)(3uv+p)=0(4) 由于u、v是两个变数,而该处仅置一个方程, 为通过u、v确定X则需设(u3+v3)+q=0(5)和(u+v)(3uv+p)=0(6), 由此得u3+v3=-q,u3v3=-P3/27, 依此做一元二次方程Z2+qZ-p3/27=0, 则得u3=-q/2+(q2/4+p3/27)1/2,v3=-q/2-(q2/4+p3/27)1/2, 则方程解应为X=[-q/2+(q2/4+p3/27)1/2]1/3+[-q/2-(q2/4+p3/27)1/2]1/3, 因为方程根式还有虚数根存在,化简筛选既可得出三个根解。 由方程式判别式D确定,D<0时,方程有三根;当D=0时,X1=2(-q/2)1/3,X2=X3=(q/2)1/3;当D>0,只有一实根,其余两根为共轭复数根。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。