词条 | 解方程 |
释义 | § 基本含义 求方程的解的过程叫解方程。 或者说解方程就是求出方程中所有未知数的值。解方程 § 特点 求出方程中的所有未知数的值,用未知数的值代入方程时,方程式等号左右的计算值将相等。 § 步骤 解方程的步骤 :(1)有括号就先去掉 ;(2)移项:将含未知数的项移到左边,常数项移到另右边 ;(3)合并同类项:使方程变形为单项式 ;(4)方程两边同时除以未知数的系数得未知数的值。例如:3+x=18 解: x =18-3 x =15 ∴x=15是方程的解 [1] § 方程解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。 x^y就是x的y次方 塔塔利亚发现的一元三次方程的解法 一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p3 = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x。 费拉里发现的一元四次方程的解法 和三次方程中的做法一样,可以用一个坐标平移来消去四次方程 一般形式中的三次项。所以只要考虑下面形式的一元四次方程: x4=px2+qx+r 关键在于要利用参数把等式的两边配成完全平方形式。考虑一个参数 a,我们有 (x2+a)2 = (p+2a)x2+qx+r+a2 等式右边是完全平方式当且仅当它的判别式为0,即 q2 = 4(p+2a)(r+a2) 这是一个关于a的三次方程,利用上面一元三次方程的解法,我们可以 解出参数a。这样原方程两边都是完全平方式,开方后就是一个关于x 的一元二次方程,于是就可以解出原方程的根x。 最后,对于5次及以上的一元高次方程没有通用的代数解法(即通过各项系数经过有限次四则运算和乘方和开方运算),这称为阿贝耳定理 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。