词条 | 复合函数 |
释义 | 定义设y=f(u),u=g(x),当x在u=g(x)的定义域Dg中变化时,u=g(x)的值在y=f(u)的定义域Df内变化,因此变量x与y之间通过变量u形成的一种函数关系,记为:y=f(u)=f[g(x)]称为复合函数(composite function),其中x称为自变量,u为中间变量,y为因变量(即函数)。 生成条件不是任何两个函数都可以复合成一个复合函数,只有当μ=φ(x)的值域存在非空子集Zφ是y=f(μ)的定义域Df的子集时,二者才可以构成一个复合函数。 定义域若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是 D={x|x∈A,且g(x)∈B} 周期性设y=f(u),的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+) 增减性依y=f(u),μ=φ(x)的增减性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减” 判断复合函数的单调性的步骤如下:⑴求复合函数定义域; ⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数); ⑶判断每个常见函数的单调性; ⑷将中间变量的取值范围转化为自变量的取值范围; ⑸求出复合函数的单调性。 例如:讨论函数y=0.8^(x^2-4x+3)的单调性。解:函数定义域为R。 令u=x^2-4x+3,y=0.8^u。 指数函数y=0.8^u在(-∞,+∞)上是减函数, u=x^2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数, ∴ 函数y=0.8^(x2-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。 利用复合函数求参数取值范围 求参数的取值范围是一类重要问题,解题关键是建立关于这个参数的不等式组,必须 将已知的所有条件加以转化。 求导复合函数求导的前提:复合函数本身及所含函数都可导 法则1:设u=g(x) f'(x)=f'(u)*g'(x) 法则2:设u=g(x),a=p(u) f'(x)=f'(a)*p'(u)*g'(x) 例如: 1、求:函数f(x)=(3x+2)^3+3的导数 设u=g(x)=3x+2 f(u)=u^3+3 f'(u)=3u^2=3(3x+2)^2 g'(x)=3 f'(x)=f'(u)*g'(x)=3(3x+2)^2*3=9(3x+2)^2 2、求f(x)=√[(x-4)^2+25]的导数 设u=g(x)=x-4,a=p(u)=u^2+25 f(a)=√a f'(a)=1/(2√a)=1/{2√[(x-4)^2+25]} p'(u)=2u=2(x-4) g'(x)=1 f'(x)=f'(a)*p'(u)*g'(x)=2(x-4)/{2√[(x-4)^2+25]}=(x-4)/√[(x-4)^2+25] |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。