词条 | 合成氨工业 |
释义 | 基本无机化工之一。氨是化肥工业和基本有机化工的主要原料。从氨可加工成硝酸,现代化学工业中,常将硝酸生产归属于合成氨工业范畴。合成氨工业在20世纪初期形成,开始用氨作火炸药工业的原料,为战争服务;第一次世界大战结束后,转向为农业、工业服务。随着科学技术的发展,对氨的需要量日益增长。50年代后氨的原料构成发生重大变化,近30年来合成氨工业发展很快。 世界合成氨工业概况①生产能力和产量。合成氨是化学工业中产量很大的化工产品。1982年,世界合成氨的生产能力为125Mt氨,但因原料供应、市场需求的变化,合成氨的产量远比生产能力要低。近年,合成氨产量以苏联、中国、美国、印度等十国最高,占世界总产量的一半以上(表1[ 世界合成氨主要生产国产量(kt)])。②消费和用途。合成氨主要消费部门为化肥工业,用于其他领域的(主要是高分子化工、火炸药工业等)非化肥用氨,统称为工业用氨。目前,合成氨年总消费量(以N计)约为78.2Mt,其中工业用氨量约为10Mt,约占总氨消费量的12%。③原料。合成氨主要原料有天然气、石脑油、重质油和煤等。1981年,世界以天然气制氨的比例约占71%,苏联为92.2%、美国为96%、荷兰为100%;中国仍以煤、焦炭为主要原料制氨,天然气制氨仅占20%。70年代原油涨价后,一些采用石脑油为原料的合成氨老厂改用天然气,新建厂绝大部分采用天然气作原料。④生产方法。生产合成氨的方法主要区别在原料气的制造,其中最广泛采用的为蒸汽转化法和部分氧化法(见合成氨原料气)。 特点①农业对化肥的需求是合成氨工业发展的持久推动力。世界人口不断增长给粮食供应带来压力,而施用化学肥料是农业增产的有效途径。氨水(即氨的水溶液)和液氨体本身就是一种氮肥;农业上广泛采用的尿素、硝酸铵、硫酸铵等固体氮肥,和磷酸铵、硝酸磷肥等复合肥料,都是以合成氨加工生产为主。②与能源工业关系密切。合成氨生产通常以各种燃料为原料,同时生产过程还需燃料供给能量,因此,合成氨是一种消耗大量能源的化工产品。每吨液氨的理论能耗为 21.28GJ,实际能耗远比理论能耗多,随着原料、工厂规模、流程与管理水平不同而有差异。日产 1000t氨的大型合成氨装置生产液氨的实际能耗约为理论能耗的两倍(表2[ 大型氨厂生产合成氨的实际能耗])。③工艺复杂、技术密集。氨合成是在高压高温和催化剂存在下进行的,为气固相催化反应过程。由于氨合成催化剂(见无机化工催化剂)很易受硫的化合物、碳的氧化物和水蒸气毒害(见催化剂中毒),而从各种燃料制取的原料气中都含有不同数量的这些物质,故在原料气送往氨合成前,需将有害物质除去。因此合成氨生产总流程长,工艺也比较复杂,根据不同原料及不同的净化方法而有多种流程(见氨)。 发展趋势①原料路线的变化方向。从世界燃料储量来看,煤的储量约为石油、天然气总和的10倍,自从70年代中东石油涨价后,从煤制氨路线重新受到重视,但因以天然气为原料的合成氨装置投资低、能耗低、成本低的缘故,预计到20世纪末,世界大多数合成氨厂仍将以气体燃料为主要原料。②节能和降耗。合成氨成本中能源费用占较大比重,合成氨生产的技术改进重点放在采用低能耗工艺、充分回收及合理利用能量上,主要方向是研制性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等。现在已提出以天然气为原料的节能型合成氨新流程多种,每吨液氨的设计能耗可降低到约29.3GJ。③与其他产品联合生产。合成氨生产中副产大量的二氧化碳,不仅可用于冷冻、饮料、灭火,也是生产尿素、纯碱、碳酸氢铵的原料。如果在合成氨原料气脱除二氧化碳过程中能联合生产这些产品,则可以简化流程、减少能耗、降低成本。中国开发的用氨水脱除二氧化碳直接制碳酸氢铵新工艺,以及中国、意大利等国开发的变换气气提法联合生产尿素工艺,都有明显的优点。 合成氨的条件 :氨的合成是一个放热、气体总体积缩小的可逆反应。 根据化学反应速率的知识,得知升温、增大压强、及使用催化剂都可以是合成氨的化学反应速率增大。 压强:有研究表明,在400°C,压强超过200MPa时,不使用催化剂,氨便可以顺利合成,但实际生产中,太大的压强需要的动力就大,对材料要求也会增高,这就增加了生产成本,因此,受动力材料设备影响,目前我国合成氨厂一般采用20MPa~50MPa. 温度:从理想条件来看,氨的合成在较低温度下进行有利,但温度过低,反应速率会很小,故在实际生产中,一般选用500°C。 催化剂:采用铁触媒(以铁为主,混合的催化剂),铁触媒在500°C时活性最大,这也是合成氨选在500°C的原因。 最后,制得的氨量也不算多,还可以采取迅速冷却,使气态氨变为液态氨。也可原料重复利用。 但对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。 工业制氨法①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化 碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。 用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。 贮运商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。 (1)原料气制备将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ①一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:CO+H2O→H2+CO2=-41.2kJ/mol0298HΔ 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ②脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。 粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。 一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 ③气体精制过程 经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为 了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。 目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下: CO+3H2→CH4+H2O=-206.2kJ/mol0298HΔ CO2+4H2→CH4+2H2O=-165.1kJ/mol0298HΔ (3)氨合成将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下: N2+3H2→2NH3(g)=-92.4kJ/mol 热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为: xFe+N2→FexN FexN+[H]吸→FexNH FexNH+[H]吸→FexNH2 FexNH2+[H]吸FexNH3xFe+NH3 在无催化剂时,氨的合成反应的活化能很高,大约335kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126kJ/mol~167kJ/mol,第二阶段的反应活化能为13kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能, 因而反应速率加快了。 催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。 催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。