请输入您要查询的百科知识:

 

词条 函数的有界性
释义

函数的有界性定义:

如果对于变量x所考虑的范围(用D表示)内,存在一个正数M,使在D上的函数值f(x)都满足

│f(x)│≤M

则称函数y=f(x)在D上有界,亦称f(x)在D上是有界函数.如果不存在这样的正数M,则称函数y=f(x)在D上无界,亦称f(x)在D上是无界函数.

举例:

一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/27 1:04:06