词条 | 高维数据挖掘 |
释义 | 什么是数据挖掘?数据挖掘指的是从大量的数据中提取隐含的、事先未知的、并且潜在有用的知识的技术。数据挖掘的广义观点:数据挖掘就是从存放在数据库,数据仓库或其他信息库中的大量的数据中“挖掘”有趣知识的过程。它是计算机技术研究中的一个很有应用价值的新领域,融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术,目前已成为国际上数据库和信息决策领域中最前沿的研究方向之一,引起了学术界和工业界的广泛关注。 高维数据挖掘的特点高维数据挖掘是基于高维度的一种数据挖掘,它和传统的数据挖掘最主要的区别在于它的高维度。目前高维数据挖掘已成为数据挖掘的重点和难点。随着技术的进步使得数据收集变得越来越容易,导致数据库规模越来越大、复杂性越来越高,如各种类型的贸易交易数据、Web 文档、基因表达数据、文档词频数据、用户评分数据、WEB使用数据及多媒体数据等,它们的维度(属性)通常可以达到成百上千维,甚至更高。 由于高维数据存在的普遍性,使得对高维数据挖掘的研究有着非常重要的意义。但由于“维灾”的影响,也使得高维数据挖掘变得异常地困难,必须采用一些特殊的手段进行处理。 随着数据维数的升高,高维索引结构的性能迅速下降,在低维空间中,我们经常采用欧式距离作为数据之间的相似性度量,但在高维空间中很多情况下这种相似性的概念不复存在,这就给高维数据挖掘带来了很严峻的考验,一方面引起基于索引结构的数据挖掘算法的性能下降,另一方面很多基于全空间距离函数的挖掘方法也会失效。解决的方法可以有以下几种:可以通过降维将数据从高维降到低维,然后用低维数据的处理办法进行处理;对算法效率下降问题可以通过设计更为有效的索引结构、采用增量算法及并行算法等来提高算法的性能;对失效的问题通过重新定义使其获得新生。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。