quantile fractile
分位数又称百分位点,或者下侧分位数。
设连续随机变量X的分布函数为F(X),密度函数为p(x)。那么,对任意0<p<1的p,称F(X)=p的x为此分布的分位数,或者下侧分位数。简单的说,分位数指的就是连续分布函数中的一个点,这个点对应概率p。
若概率0<p<1,随机变量X或它的概率分布的分位数Za。是指满足条件p(X>Za)=α的实数。
分位数有三种不同的称呼,即α分位数、上侧α分位数与双侧α分位数,它们的定义如下:
当随机变量X的分布函数为 F(x),实数α满足0 <α<1 时,α分位数是使P{X< xα}=F(xα)=α的数xα,
上侧α分位数是使P{X >λ}=1-F(λ)=α的数λ,
双侧α分位数是使P{X<λ1}=F(λ1)=0.5α的数λ1、使 P{X>λ2}=1-F(λ2)=0.5α的数λ2 如t分布的分位数表,自由度f=20和α=0.05时的分位数为1.7247。