词条 | 方差 |
释义 | 方差是各个数据与平均数之差的平方的平均数。在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。 概述如下面的例子: 已知某零件的真实长度为a,现用甲、乙两台仪器各测量10次,将测量结果X用坐标上的点表示如图: 甲仪器测量结果:乙仪器测量结果:两台仪器的测量结果的均值都是 a 。但是用上述结果评价一下两台仪器的优劣,很明显,我们会认为乙仪器的性能更好,因为乙仪器的测量结果集中在均值附近。 由此可见,研究随机变量与其均值的偏离程度是十分必要的。那么,用怎样的量去度量这个偏离程度呢?容易看到E[|X-E[X]|]能度量随机变量与其均值E(X)的偏离程度. 但由于上式带有绝对值,运算不方便,通常用量 E[(X-E[X])^2] 这一数字特征就是方差。 公式方差是实际值与期望值之差平方的期望值,而标准差是方差算术平方根。 在实际计算中,我们用以下公式计算方差。 方差是各个数据与平均数之差的平方和的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示样本的平均数,n表示样本的数量,^,xn表示个体,而s^2就表示方差。 而当用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作为样本X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(xi-X~)^2来估计X的方差,并且把它叫做“样本方差”。 方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S²。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定 。 定义设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX。 即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或均方差)。即用来衡量一组数据的离散程度的统计量。 方差刻画了随机变量的取值对于其数学期望的离散程度。 若X的取值比较集中,则方差D(X)较小 若X的取值比较分散,则方差D(X)较大。 因此,D(X)是刻画X取值分散程度的一个量,它是衡量X取值分散程度的一个尺度。 计算由定义知,方差是随机变量 X 的函数 g(X)=∑[X-E(X)]^2 pi 数学期望。即: 由方差的定义可以得到以下常用计算公式: D(X)=∑xi²pi-E(x)² D(X)=∑(xi²pi+E(X)²pi-2xipiE(X)) =∑xi²pi+∑E(X)²pi-2E(X)∑xipi =∑xi²pi+E(X)²-2E(X)² =∑xi²pi-E(x)² 方差其实就是标准差的平方。 几个重要性质(1)设c是常数,则D(c)=0。 (2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。 (3)设 X 与 Y 是两个随机变量,则 D(X+Y)= D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]} 特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差), 则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况。 (4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。 (5)D(aX+bY)=a^2DX+b^2DY+2abE{[X-E(X)][Y-E(Y)]}。 随机变量的期望和方差随机变量X。 X服从(0—1)分布,则E(X)=p D(X)=p(1-p) X服从泊松分布,即X~ π(λ),则 E(X)= λ,D(X)= λ X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2, D(X)=(b-a)^2/12 X服从指数分布,即X~e(λ), E(X)= λ^(-1),D(X)= λ^(-2) X服从二项分布,即X~B(n,p),则E(x)=np, D(X)=np(1-p) X 服从正态分布,即X~N(μ,σ^2), 则E(x)=μ, D(X)=σ^2 X 服从标准正态分布,即X~N(0,1), 则E(x)=0, D(X)=1 随机变量求方差的通用公式,即D(X)=E(X^2)-[E(X)]^2 统计学的应用概念样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 方差和标准差。方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。方差相应的计算公式为 标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。 高考实例(甘肃省,2002年)某校初三年级甲、乙两班举行电脑汉字输入速度比赛,两个班参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表所示: 班级 参加人数 平均字数 中位数 方差 甲 55 135 149 191 乙 55 135 151 110有一位同学根据上表得出如下结论: ①甲、乙两班学生的平均水平相同 ②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达150个以上为优秀) ③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是________(填序号). 解:填①、②、③, 解:甲乙的平均数相同,所以①甲、乙两班学生的平均水平相同.根据中位数可知乙的中位数大,所以②乙班优秀的人数比甲班优秀的人数多.根据方差数据可知,方差越大波动越大,反之越小,所以甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大. 故填:①②③. 点评:本题考查统计知识中的中位数、平均数和方差的意义.要知道平均数和中位数反映的是数据的集中趋势,方差反映的是离散程度. 切比雪夫不等式切比雪夫(Chebyshev)不等式 对于任一随机变量X ,若EX与DX均存在,则对任意ε>0, 恒有P{|X-EX|>=ε}<=DX/ε^2或P{|X-EX|<ε}>=1-DX/ε^2 切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε} 越小,P{|X-EX|<ε}越大, 也就是说,随机变量X取值基本上集中在EX附近,这进一步说明了方差的意义。 同时当EX和DX已知时,切比雪夫不等式给出了概率P{|X-EX|>=ε}的一个上界,该上界并不涉及随机变量X的具体概率分布,而只与其方差DX和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。 切比雪夫不等式是指在任何数据集中,与平均数超过K倍标准差的数据占的比例至多是1/K^2。 在概率论中,切比雪夫不等式显示了随机变数的「几乎所有」值都会「接近」平均。这个不等式以数量化这方式来描述,究竟「几乎所有」是多少,「接近」又有多接近: 与平均相差2个标准差的值,数目不多于1/4 与平均相差3个标准差的值,数目不多于1/9 与平均相差4个标准差的值,数目不多于1/16 …… 与平均相差k个标准差的值,数目不多於1/K^2 举例说,若一班有36个学生,而在一次考试中,平均分是80分,标准差是10分,我们便可得出结论:少于50分(与平均相差3个标准差以上)的人,数目不多于4个(=36*1/9)。 极差与方差 极差不能用作比较,单位不同 ; 方差能用作比较, 因为都是个比率。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。