请输入您要查询的百科知识:

 

词条 顶点式
释义

顶点式

顶点式:y=a(x-h)^2+k

顶点坐标:(h,k)

解释

在二次函数的图像上

顶点式:y=a(x-h)^2+k, 抛物线的顶点P(h,k)

顶点坐标:对于一般二次函数 y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)

推导

一般式y=ax²+bx+c提a..得y=a(x²+b/a x)+c配方..y=a(x+b/2a)²+(4ac-b²)/4a...令平方项为0 x=-b/2a y=(4ac-b²)/4a

所以顶点坐标为 (-b/2a,(4ac-b^2)/4a)

考点扫描

1.会用描点法画出二次函数的图象.

2.能利用图象或配方法确定抛物线的开口方向及对称轴、顶点的位置.

3.会根据已知图象上三个点的坐标求出二次函数的解析式.

4. 将一般式化为顶点式。

名师讲解

1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

y=ax² y=a(x-h) ²

y=a(x-h)²+k

y=ax²+bx+c

顶点坐标

(0,0)

(h,0)

(h,k)

(-b/2a,(4ac-b²)/4a)

对 称 轴

x=0

x=h

x=h

x= -b/2a

当h>0时,y=a(x-h)²的图象可由抛物线y=ax2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax&sup2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)&sup2;+k的图象;

当h>0,k<0时,将抛物线y=ax&sup2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)&sup2;+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)&sup2;+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)&sup2;+k的图象;

因此,研究抛物线 y=ax&sup2;+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)&sup2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax&sup2;+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=,顶点坐标是().

3.抛物线y=ax&sup2;+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小.

4.抛物线y=ax&sup2;+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b&sup2;-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax&sup2;+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x2-x1|=.

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax&sup2;+bx+c的最值:如果a>0(a<0),则当x=时,y最小(大)值=.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax&sup2;+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)&sup2;+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/3/31 9:41:13