词条 | 蒲利群 |
释义 | 个人简介姓名: 蒲利群 研究方向: 组合设计与编码理论,2006年3月毕业于上海交通大学数学系,理学博士。郑州大学数学系副教授,硕士生导师,研究领域:组合设计与编码理论。参与国家自然科学面上基金项目。美国数学评论评论员。 代表作已发表学术论文10余篇,其中代表作如下。 1)Jun Ma,Liqun Pu,Hao Shen. Cycle decompositions of Knn-I, SIAM Journal on Discrete Mathematics,2006,20:603-609.(SCI:113BM.) 2) Liqun Pu,Hung-Lin Fu,Hao Shen.C4-decomposition of Dv/P and DvUp where P is a 2-regular subgraph of Dv, Graphs and Combinatorics,2006,22:515-525.(SCI:123VH.) 3) Liqun Pu,Hao Shen,Jun Ma and San Ling, Cycle systems in the complete bipartite graph plus a one factor, SIAM Journal on Discrete Mathematics,2008,vol21,no4:1083-1092.(SCI:260NF.) 4) Liqun Pu,Hung-Lin Fu,Hao Shen. Maximal sets of Hamilton cycles in Dn,Discrete Math emetics,2008,308:3706-3710. (SCI:315HS.)获奖情况主要论文1)Jun Ma,Liqun Pu,Hao Shen. Cycle decompositions of Knn-I, SIAM Journal on Discrete Mathematics,2006,20:603-609.(SCI:113BM.) 2) Liqun Pu,Hung-Lin Fu,Hao Shen.C4-decomposition of Dv/P and DvUp where P is a 2-regular subgraph of Dv, Graphs and Combinatorics,2006,22:515-525.(SCI:123VH.) 3) Liqun Pu,Hao Shen,Jun Ma and San Ling, Cycle systems in the complete bipartite graph plus a one factor, SIAM Journal on Discrete Mathematics,2008,vol21,no4:1083-1092.(SCI:260NF.) 4) Liqun Pu,Hung-Lin Fu,Hao Shen. Maximal sets of Hamilton cycles in Dn,Discrete Math emetics,2008,308:3706-3710. (SCI:315HS.) |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。