请输入您要查询的百科知识:

 

词条 直线
释义
1 几何学名词术语

在日常生活当中,一根拉紧的绳子、一根竹竿、人行横道线、都给人以直线的形象,而实际上的直线是两端都没有端点、可以向两端无限延伸、不可测量长度的。歌曲《直线》是张韶涵《欧若拉》专辑中的一首歌。

定义

直线(straight line)是几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。或者定义为:曲率最小的曲线(以无限长为半径的圆弧)。

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。

求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与 X 轴正向的夹角( 叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。

在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。直线在空间中的位置, 由它经过的空间一点及它的一个方向向量完全确定。在欧几里得几何学中,直线只是一个直观的几何对象。在建立欧几里得几何学的公理体系时,直线与点、平面等都是不加定义的,它们之间的关系则由所给公理刻画。

在非欧几何中直线指连接两点间最短的线,又称短程线。

方向向量:截取直线l上两点A(l,n,0)和B(k+l,m+n,1)方向向量为:AB=(k,m,1)

直线的对称性

直线是轴对称图形。它有无数条对称轴,其中一条是它本身,还有任意一条与它垂直的直线。

因为在直线的任意一点作它的垂线,直线可以看作被分成两条方向相反的射线,将一条射线沿这条垂线折叠,这两条射线就重合了。所以说,直线有无数条对称轴。

特点

没有端点,可以向两端无限延长,长度无法度量。

直线的方程

平面方程

1、一般式:适用于所有直线

Ax+By+C=0 (其中A、B不同时为0)

2、点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为

y-y0=k(x-x0)

当k不存在时,直线可表示为

x=x0

3、斜截式:在y轴上截距为b(即过(0,b)),斜率为k的直线

由点斜式可得斜截式y=kx+b

与点斜式一样,也需要考虑K存不存在

4、截距式:不适用于和任意坐标轴垂直的直线

知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为

bx+ay-ab=0

特别地,当ab均不为0时,斜截式可写为x/a+y/b=1

5、两点式:过(x1,y1)(x2,y2)的直线

(y-y1)/(y1-y2)=(x-x1)/(x1-x2)(斜率k需存在)

6、法线式

Xcosθ+ysinθ-p=0

其中p为原点到直线的距离,θ为法线与X轴正方向的夹角

7、点方向式 (X-X0)/U=(Y-Y0)/V

(U,V不等于0,即点方向式不能表示与坐标平行的式子)

8、点法向式

a(X-X0)+b(y-y0)=0

空间方程

1、一般式

ax+bz+c=0,dy+ez+fc=0

2、x0y式

x=kz+b,y=lz+b

直线与一次函数

一次函数y=kx+b(x∈R,k∈R,b∈R,y∈R)的图象是一条直线,其与y轴交于(0,b),与x轴交于(-b/k,0)

仰角(与x轴正半轴的交角θ∈(0,π))满足

(1)当θ∈(0,π/2)时,θ=arctan k

(2)当θ∈(π/2,π)时,θ=π + arctan k

有关直线的位置关系

直线和直线

平面几何:平行和相交

在同一平面的两条直线之间,有平行、相交(包括垂直)、重合三种位置关系。

设直角坐标平面上两条直线的方程分别为:

L1:a1X+b1Y+c1=0

L2:a2X+b2Y+c2=0

当a1/a2≠b1/b2 则两直线相交

当a1/a2=b1/b2≠c1/c2 则两直线平行

当a1/a2=b1/b2=c1/c3 则两直线重合

当a1a2+b1b2=0 则两直线垂直

空间几何:异面,平行和相交

l1:x=kz+b,y=lz+a l2:x=k1z+b1,l1z+a1=y

相交:有公共点

平行:k1/k=l1/l

异面:无公共点且k1/k≠l1/l

垂直:k*k1+l*l1=-1

直线和平面

设直线方程为x=kz+b,y=lz+a,平面方程为cx+dy+ez+f=0,p=k+l+e,q=a+b+f 属于:p=0,q=0 平行:p=0,q≠0 相交:p≠0

直线公理

过两点有且只有一条直线,即两点确定一条直线。

有关直线

设平面e的法向量为c 直线m、n的方向向量为a、b

把平面ax+by+cz+d=0的法向量为(a,b,c);直线x=kz+b,y=lz+a的方向向量为(k,l,1)代入即可

则直线所成的角:m,n所成的角为a。

cosa=cos<a,b>=|a*b|/|a||b|

直线和平面所成的角: 设b为m和e所成的角,则b=π/2±<a,c>。sinb=|cos<a,c>|=|a*c|/|a||c|

平面两直线所成的角:设K(l1)=k1,K(l2)=k2(k1k2≠-1)tan<l1,l2>=(k1-k2)/(1+k1k2)

距离

异面直线的距离:l1、l2为异面直线,l1,l2公垂直线的方向向量为n,C、D为l1、l2上任意一点,l1到l2的距离为|AB|=|CD*n|/|n|

点到平面的距离:设PA为平面的一条斜线,O是P点在a内的射影,PA和a所成的角为b,n为a的法向量。

易得:|PO|=|PA|sinb=|PA|*|cos<PA,n>|=|PA|*(|PA*n|/|PA||n|)=|PA*n|/|PA|

直线到平面的距离为在直线上一点到平面的距离;

点到直线的距离:A∈l,O是P点在l上的射影,PA和l所成的角为b,s为l的方向向量。

易得:|PO|=|PA|*|sinb|=|PA|*|sin<PA,s>|=|(PA|^2|s|^2|-|PA*s|^2)^1/2/|s|

平面内:直线ax+by+c=0到M(m,n)的距离为|am+bn+c|/(a^2+b^2)^1/2

平行直线:l1ax+by+c=0,l2ax+by+d=0l1到l2的距离为|c-d|/(a^2+b^2)^1/2

备注:

直线是曲线的暂短停留。

2 张韶涵《欧若拉》专辑中歌曲

《直线》是大飞作词,深白色作曲,张韶涵演唱的一首歌曲,收录在张韶涵2004年发行的国语专辑《欧若拉》中。

基本信息

歌曲:直线

歌手:张韶涵

作词:大飞

作曲:白深色

编曲:吕绍淳

专辑:《欧若拉》

发行年份:2004年12月

语言:国语

发行公司:福茂唱片

歌曲介绍

由大飞作词,深白色作曲,吕绍淳编曲的歌曲《直线》,属于专辑中深具爆发力的一首歌曲。

歌词

我选择在街上直走

和人群擦肩而过

寂寞可以扣掉几分钟

目标就差三个街口

相信他一定等我

加快脚步空气都发热

绿灯的节奏跟着我

红灯最后倒数三秒钟

梦的天空

不该是座迷宫

直线画出彩虹

心像风般自由

爱的天空

开不开心直说

哭过后的笑容

难过丢向天空

我选择在街上直走

和人群擦肩而过

寂寞可以扣掉几分钟

目标就差三个街口

相信他一定等我

加快脚步空气都发热

距离在心跳中压缩

越跳越重每次都感动

梦的天空

不该是座迷宫

直线画出彩虹

心像风般自由

爱的天空

开不开心直说

哭过后的笑容

难过丢向天空

梦的天空

不该是座迷宫

直线画出彩虹

心像风般自由

爱的天空

开不开心直说

哭过后的笑容

难过丢向天空

梦的天空

不该是座迷宫

直线画出彩虹

心像风般自由

爱的天空

开不开心直说

哭过后的笑容

难过丢向天空

梦的天空

不该是座迷宫

直线画出彩虹

心像风般自由

爱的天空

开不开心直说

哭过后的笑容

难过丢向天空

歌手简介

张韶涵,中国台湾歌手、影视演员,毕业于温斯顿·邱吉尔爵士中等学校。代表作品有音乐专辑《Over The Rainbow》、《欧若拉》、《潘朵拉》、《梦里花》、《ANG 5.0》、《第五季》等,歌曲《遗失的美好》、《寓言》、《欧若拉》、《隐形的翅膀》、《不想懂得》、《白白的》等,电视剧《永不言弃》 、《公主小妹》等,电影《短信一月追》。2005年凭借个人专辑《欧若拉》入围第16届金曲奖“最佳国语女演唱人”。2006年凭借《爱杀17》入围第41届电视金钟奖戏剧节目最佳女主角奖。同年8月入围马来西亚当地华语乐坛权威性大奖2006“娱协奖”“国际组”20强。2007年凭借个人专辑《潘朵拉》入围第18界金曲奖“最佳国语女演唱人”。2008年凭借《公主小妹》入围第43届电视金钟奖戏剧节目最佳女主角奖。

电脑上的直线概念

直通的,直拉的线,不经过任何的设备,直接插入终端

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/16 5:43:59