请输入您要查询的百科知识:

 

词条 一阶线性微分方程
释义

定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。(这里所谓的一阶,指的是方程中关于Y的导数是一阶导数。)

当Q(x)≡0时,方程为y'+P(x)y=0,这时称方程为一阶齐次线性方程。(这里所谓的齐次,指的是方程的每一项关于y、y'、y"的次数相等。因为y'和P(x)y都是一次的,所以为齐次。)

当Q(x)≠0时,称方程y'+P(x)y=Q(x)为一阶非齐次线性方程。(由于Q(x)中未含y及其导数,所以是关于y及其各阶导数的0次项,因为方程中含一次项又含0次项,所以为非齐次。)

一阶线性微分方程的求解一般采用常数变易法。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/16 12:45:51