请输入您要查询的百科知识:

 

词条 维度建模
释义

维度建模(dimensional modeling)是数据仓库建设中的一种数据建模方法。Kimball 最先提出这一概念。其最简单的描述就是,按照事实表,维表来构建数据仓库,数据集市。这种方法的最被人广泛知晓的名字就是星型模式(Star-schema)。实体关系(E-R)建模通常用于为单位的所有进程创建一个复杂的模型。这种方法已被证实在创建高效的联机事务处理 (OLTP) 系统方面很有效。相反,维度建模针对零散的业务进程创建个别的模型。例如,销售信息可以创建为一个模型,库存可以创建为另一个模型,而客户帐户也可以创建为另一个模型。每个模型捕获事实数据表中的事实,以及那些事实在链接到事实数据表的维度表中的特性。由这些排列产生的架构称为星型架构或雪花型架构,已被证实在数据仓库设计中很有效。

维度建模将信息组织到结构中,这些结构通常对应于分析者希望对数据仓库数据使用的查询方法。1999 年第三季度西北地区的食品销售额是多少?表示使用三个维度(产品、地理、时间)指定要汇总的信息。

星型模式之所以广泛被使用,在于针对各个维作了大量的预处理,如按照维进行预先的统计、分类、排序等。通过这些预处理,能够极大的提升数据仓库的处理能力。特别是针对 3NF 的建模方法,星型模式在性能上占据明显的优势。

同时,维度建模法的另外一个优点是,维度建模非常直观,紧紧围绕着业务模型,可以直观的反映出业务模型中的业务问题。不需要经过特别的抽象处理,即可以完成维度建模。这一点也是维度建模的优势。

但是,维度建模法的缺点也是非常明显的,由于在构建星型模式之前需要进行大量的数据预处理,因此会导致大量的数据处理工作。而且,当业务发生变化,需要重新进行维度的定义时,往往需要重新进行维度数据的预处理。而在这些与处理过程中,往往会导致大量的数据冗余。

另外一个维度建模法的缺点就是,如果只是依靠单纯的维度建模,不能保证数据来源的一致性和准确性,而且在数据仓库的底层,不是特别适用于维度建模的方法。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 20:40:01