词条 | 树状数组 |
释义 | 概述树状数组是一个查询和修改复杂度都为log(n)的数据结构,假设数组a[1..n],那么查询a[1]+...+a[n]的时间是log级别的,而且是一个在线的数据结构, 支持随时修改某个元素的值,复杂度也为log级别。 来观察这个图: 令这棵树的结点编号为C1,C2...Cn。令每个结点的值为这棵树的值的总和,那么容易发现: C1 = A1 C2 = A1 + A2 C3 = A3 C4 = A1 + A2 + A3 + A4 C5 = A5 C6 = A5 + A6 C7 = A7 C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 ... C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15 + A16 这里有一个有趣的性质: 设节点编号为x,那么这个节点管辖的区间为2^k(其中k为x二进制末尾0的个数)个元素。因为这个区间最后一个元素必然为Ax, 所以很明显:Cn = A(n – 2^k + 1) + ... + An 算这个2^k有一个快捷的办法,定义一个函数如下即可: int lowbit(int x){ return x&(x^(x–1)); } 当想要查询一个SUM(n)(求a[n]的和),可以依据如下算法即可: step1: 令sum = 0,转第二步; step2: 假如n <= 0,算法结束,返回sum值,否则sum = sum + Cn,转第三步; step3: 令n = n – lowbit(n),转第二步。 可以看出,这个算法就是将这一个个区间的和全部加起来,为什么是效率是log(n)的呢?以下给出证明: n = n – lowbit(n)这一步实际上等价于将n的二进制的最后一个1减去。而n的二进制里最多有log(n)个1,所以查询效率是log(n)的。 那么修改呢,修改一个节点,必须修改其所有祖先,最坏情况下为修改第一个元素,最多有log(n)的祖先。 所以修改算法如下(给某个结点i加上x): step1: 当i > n时,算法结束,否则转第二步; step2: Ci = Ci + x, i = i + lowbit(i)转第一步。 i = i +lowbit(i)这个过程实际上也只是一个把末尾1补为0的过程。 对于数组求和来说树状数组简直太快了! 典题分析例题 数列操作给定一个初始值都为0的序列,动态地修改一些位置上的数字,加上一个数,减去一个数,或者乘上一个数,然后动态地提出问题,问题的形式是求出一段数字的和. 算法分析如果直接做的话,修改的复杂度是O(1),询问的复杂度是O(N),M次询问的复杂度是M*N.M,N的范围可以有100000以上,所以这样做会超时,但是如果用线段树的话,还是很不错的! 有很多线段树能实现但树状数组却实现不了的题目。 线段树解法分析可以看出,这棵树的构造用二分便可以实现.复杂度是2*N. 每个结点用数组a来表示该结点所表示范围内的数据之和. 修改一个位置上数字的值,就是修改一个叶子结点的值,而当程序由叶子结点返回根节点的同时顺便修改掉路径上的结点的a数组的值. 对于询问的回答,可以直接查找i..j范围内的值,遇到分叉时就兵分两路,最后在合起来.也可以先找出0..i-1的值和0..j的值,两个值减一减就行了.后者的实际操作次数比前者小一些. 这样修改与维护的复杂度是logN.询问的复杂度也是logN,对于M次询问,复杂度是MlogN. 然而不难发现,线段树的编程复杂度大,空间复杂度大,时间效率也不高!!!! 树状数组解法分析所以我们来想用树形数组来实现: 那么,何为树形数组呢?? 下图中的C数组就是树状数组,a数组是原数组; 对于序列a,我们设一个数组C定义C[t] = a[t – 2^k + 1] + … + a[t],k为t在二进制下末尾0的个数。 K的计算可以这样: 2^k=t and (t xor (t-1)) 以6为例 (6)10=(0110)2 xor 6-1=(5)10=(0101)2 (0011)2 and (6)10=(0110)2 (0010)2 所以问题变的很简单,重要写几个函数就可以了; 求2^k的函数代码如下: int Lowbit(int t) { return t & ( t ^ ( t - 1 ) ); } Function Lowbit(t: longint): longint; Begin Lowbit := t and (t xor (t - 1)); End; 求1 -- end和的函数代码如下: int Sum(int end) { int sum = 0; while (end > 0) { sum += in[end]; end -= Lowbit(end); } return sum; } Function Sum(tail: longint): longint; Var s: longint; Begin s:=0; while tail > 0 do begin inc(s, in[tail]); dec(tail, Lowbit(tail)); end; sum := s; End; 对某位进行操作函数如下(以加法为例) void plus(int pos , int num) { while(pos <= n) { in[pos] += num; pos += Lowbit(pos); } } Procedure plus(p, num: longint); Begin while p <= n do begin inc(in[p], num); inc(p, Lowbit(p)); end; End. 有了这三个函数整个树形数组也就基本构建成功啦!! 对于刚才的一题,每次修改与询问都是对C数组做处理.空间复杂度有3N降为N,时间效率也有所提高.编程复杂度更是降了不少. 对于lowbit可有优化 P :lowbit:=X AND(not x+1){或 X AND (-X)}; C: lowbit:=x &(-x){或 x & (~x+1)}; 与线段树的比较树状数组是一个可以很高效的进行区间统计的数据结构。在思想上类似于线段树,比线段树节省空间,编程复杂度比线段树低,但适用范围比线段树小。 以简单的求和为例。设原数组为a[1..N],树状数组为c[1..N],其中c[k] = a[k-(2^t)+1] + ... + a[k]。比如c[6] = a[5] + a[6]。也就是说,把k表示成二进制1***10000,那么c[k]就是1***00001 + 1***00010 + ... + 1***10000这一段数的和。设一个函数lowestbit(k)为取得k的最低非零位,容易发现,根据上面的表示方法,从a[1]到a[k]的所有数的总和即为sum[k] = c[k] + c[k-lowestbit(k)] + c[k-lowestbit(k)-lowestbit(k-lowestbit(k))] + ... 于是可以在logk的时间内求出sum[k]。当数组中某元素发生变化时,需要改动的c值是c[k],c[k+lowestbit(k)], c[k+lowestbit(k)+lowestbit(k+lowestbit(k))] ... 这个复杂度是logN (N为最大范围) 扩展到多维情况:以二维为例,用c[k1][k2]表示c[k1-(2^t1)+1][k2-(2^t2)+1] + ... + c[k1][k2]的总和。可以用类似的方法进行处理。复杂度为(logn)^k (k为维数) 树状数组相比线段树的优势:空间复杂度略低,编程复杂度低,容易扩展到多维情况。劣势:适用范围小,对可以进行的运算也有限制,比如每次要查询的是一个区间的最小值,似乎就没有很好的解决办法。 多维情况的几道题目: POJ 2155 Matrix URAL 1470 UFOs 其中POJ 2155是一道很不错的题目,表面上看,这题的要求似乎和树状数组的使用方法恰好相反,改变的是一个区间,查询的反而是一个点。实际上可以通过一个转化巧妙的解决。 首先对于每个数A定义集合up(A)表示{A, A+lowestbit(A), A+lowestbit(A)+lowestbit(A+lowestbit(A))...} 定义集合down(A)表示{A, A-lowestbit(A), A-lowestbit(A)-lowestbit(A-lowestbit(A)) ... , 0}。可以发现对于任何A<B,up(A)和down(B)的交集有且仅有一个数。 于是对于这道题目来说,翻转一个区间[A,B](为了便于讨论先把原问题降为一维的情况),我们可以把down(B)的所有元素的翻转次数+1,再把down(A-1)的所有元素的翻转次数-1。而每次查询一个元素C时,只需要统计up(C)的所有元素的翻转次数之和,即为C实际被翻转的次数。 实际实现时,由于只考虑奇偶,因此无须统计确切的翻转次数。另外,如果翻转up(A)和up(B+1),查询down(C),也是同样的效果。这种方法可以很容易地扩展到二维情况。比起线段树、四分树之类的常规思路,无论编程复杂度还是常数速度上都有很大优势。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。