请输入您要查询的百科知识:

 

词条 氢气
释义

氢气(Hydrogen)是世界上已知的最轻的气体。它的密度非常小,只有空气的1/14,即在标准大气压,0℃下,氢气的密度为0.0899g/L。所以氢气可作为飞艇的填充气体(由于氢气具有可燃性,安全性不高,飞艇现多用氦气填充)。灌好的氢气球,往往过一夜,第二天就飞不起来了。这是因为氢气能钻过橡胶上人眼看不见的小细孔,溜之大吉。不仅如此,在高温、高压下,氢气甚至可以穿过很厚的钢板。氢气主要用作还原剂。

简介

同位素

在自然界中存在的同位素有:H1(氕piē)、H2(氘dāo,重氢)、H3(氚chuān,超重氢)。

以人工方法合成的同位素有:氢4、氢5、氢6、氢7。

氢是最早形成的元素,在宇宙所有中含量大约90%,但是以单质氢气存在比较少。

别名、英文名

氘;Deuterium、Heavy hydrogen.

毒性·安全防护

重氢无毒,有窒息性。

氢气有易燃易爆性;若燃烧时有较响爆鸣声,则说明氢气不纯;极易发生爆炸。

所以对此须引起足够的重视。其它参见氢。

发现

1766年由卡文迪许(H.Cavendish)在英国发现。

在化学史上,人们把氢元素的发现与“发现和证明了水是氢和氧的化合物而非元素”这两项重大成就,主要归功于英国化学家和物理学家卡文迪许(Cavendish,H.1731-1810)。

18世纪的英国化学家卡文迪许

卡文迪许是一位百万富翁,但他生活十分朴素,用自己的钱在家里建立了一座规模相当大的实验室,一生从事于科学研究。曾有科学史家说:卡文迪许“是具有学问的人中最富的,也是富人当中最有学问的。”他观察事物敏锐,精于实验设计,所做实验的结果都相当准确,而且研究范围很广泛,对于许多化学、力学和电学问题以及地球平均密度等问题的研究,都作出了重要发现。但他笃信燃素说,这使他在化学研究工作中走过一些弯路。他在五十年中只发表过18篇论文,除了一篇是理论性的外,其余全是实验性和观察性的。在他逝世以后,人们才发现他写了大量很有价值的论文稿,没有公开发表。他的这些文稿是科学研究的宝贵文献,后来分别由物理学家麦克斯韦和化学家索普整理出版。

在化学史上,有一个与这些论文稿有关的有趣的故事。卡文迪许1785年做过一个实验,他将电火花通过寻常空气和氧气的混合体,想把其中的氮全部氧化掉,产生的二氧化氮用苛性钾吸收。实验做了三个星期,最后残留下一小气泡不能被氧化。他的实验记录保存在留下的文稿中,后面写道:“空气中的浊气不是单一的物质(氮气),还有一种不与脱燃素空气(氧)化合的浊气,总量不超过全部空气的1/12.一百多年后,1892年,英国剑桥大学的物理学家瑞利(Ragleigh,L.1842-1919)测定氮的密度时,发现从空气得来的氮比从氨氧化分解产生的氮每升重0.0064克,百思不得其解。化学家莱姆塞(Ramsay,W.1852-1916)认为来自空气的氮气里面能含有一种较重的未知气体。这时,化学教授杜瓦(Duvel,J.1842-1923)向他们提到剑桥大学的老前辈卡文迪许的上述实验和小气泡之谜。他们立即把卡文迪许的科学资料借来阅读,瑞利重复了卡文迪许当年的实验,很快得到了小气泡。莱姆塞设计了一个新的实验,除去空气中的水汽、碳酸气、氧和氮后,也得到了这种气体,密度比氮气大,用分光镜检查后,肯定这是一种新的元素,取名氩。这样,卡文迪许当年的工作在1894年元素氩的发现中起了重要作用。从这个故事可看出卡文迪许严谨的科研作风和他对化学的重大贡献。1871年,剑桥大学建立了一座物理实验室,以卡文迪许的名字命名,这就是著名的卡文迪许实验室,它在几十年内,一直是世界现代物理学的一个重要研究中心。

氢的发现和氢的性质的研究

在18世纪末以前,曾经有不少人做过制取氢气的实验,所以实际上很难说是谁发现了氢,即使公认对氢的发现和研究有过很大贡献的卡文迪许本人也认为氢的发现不只是他的功劳。早在16世纪,瑞士著名医生帕拉塞斯就描述过铁屑与酸接触时有一种气体产生;17世纪时,比利时著名的医疗化学派学者海尔蒙特(van Helmont,J.B.1579-1644)曾偶然接触过这种气体,但没有把它离析、收集起来。

波义耳虽偶然收集过这种气体,但并未进行研究。他们只知道它可燃,此外就很少了解。1700年,法国药剂师勒梅里(Lemery,N.1645-1715)在巴黎科学院的《报告》上也提到过它。最早把氢气收集起来,并对它的性质仔细加以研究的是卡文迪许。

1766年卡文迪许向英国皇家学会提交了一篇研究报告《人造空气实验》,讲了他用铁、锌等与稀硫酸、稀盐酸作用制得“易燃空气”(即氢气),并用普利斯特里发明的排水集气法把它收集起来,进行研究。他发现一定量的某种金属分别与足量的各种酸作用,所产生的这种气体的量是固定的,与酸的种类、浓度都无关。他还发现氢气与空气混合后点燃会发生爆炸;又发现氢气与氧气化合生成水,从而认识到这种气体和其它已知的各种气体都不同。但是,由于他是燃素说的虔诚信徒,按照他的理解:这种气体燃烧起来这么猛烈,一定富含燃素;硫磺燃烧后成为硫酸,那么硫酸中是没有燃素的;而按照燃素说金属也是含燃素的。所以他认为这种气体是从金属中分解出来的,而不是来自酸中。他设想金属在酸中溶解时,“它们所含的燃素便释放出来,形成了这种可燃空气”。他甚至曾一度设想氢气就是燃素,这种推测很快就得以当时的一些杰出化学家舍勒、基尔万(Kirwan,R.1735-1812)等的赞同。由于把氢气充到气球中,气球便会徐徐上升,这种现象当时曾被一些燃素学说的信奉者们用来作为他们“论证”燃素具有负重量的根据。但卡文迪许究竟是一位非凡的科学家,后来他弄清楚了气球在空气中所受浮力问题,通过精确研究,证明氢气是有重量的,只是比空气轻很多。他是这样做实验的:先把金属和装有酸的烧瓶称重,然后将金属投入酸中,用排水集气法收集氢气并测体积,再称量反应后烧瓶及内装物的总量。这样他确定了氢气的比重只是空气的9%.但这些化学家仍不肯轻易放弃旧说,鉴于氢气燃烧后会产生水,于是他们改说氢气是燃素和水的化合物。

水的合成否定了水是元素的错误观念,在古希腊:恩培多克勒提出,宇宙间只存在火、气、水、土四种元素,它们组成万物。从那时起直到18世纪70年代,人们一直认为水是一种元素。1781年,普利斯特里将氢气和空气放在闭口玻璃瓶中,用电火花引爆,发现瓶的内壁有露珠出现。同年卡文迪许也用不同比例的氢气与空气的混合物反复进行这项实验,确认这种露滴是纯净的水,表明氢是水的一种成分。这时氧气业已发现,卡文迪许又用纯氧代替空气进行试验,不仅证明氢和氧化合成水,而且确认大约2份体积的氢与1份体积的氧恰好化合成水(发表于1784年)。这些实验结果本已毫无疑义地证明了水是氢和氧的化合物,而不是一种元素,但卡文迪许却和普利斯特里一样,仍坚持认为水是一种元素,氧是失去燃素的水,氢则是含有过多燃素的水。他用下式表示“易燃空气”(氢)的燃烧:

(水+燃素)+ (水-燃素)—→水

易燃空气(氢) 失燃素空气(氧)

1782年,拉瓦锡重复了他们的实验,并用红热的枪筒分解了水蒸汽,明确提出正确的结论:水不是元素而是氢和氧的化合物,纠正了两千多年来把水当做元素的错误概念。1787年,他把过去称作“易燃空气”的这种气体命名为“Hydrogen”(氢),意思是“产生水的”,并确认它是一种元素。

理化性质

氢气是无色并且密度比空气小的气体(在各种气体中,氢气的密度最小。标准状况下,1升氢气的质量是0.0899克,相同体积比空气轻得多)。因为氢气难溶于水,所以可以用排水集气法收集氢气。另外,在101千帕压强下,温度-252.87℃时,氢气可转变成无色的液体;-259.1℃时,变成雪状固体。常温下,氢气的性质很稳定,不容易跟其它物质发生化学反应。但当条件改变时(如点燃、加热、使用催化剂等),情况就不同了。如氢气被钯或铂等金属吸附后具有较强的活性(特别是被钯吸附)。金属钯对氢气的吸附作用最强。

总结为:

分子式:H2

沸点:-252.77℃(20.38K)

熔点:-259.2℃

密度:0.09 kg/m³

相对分子质量:2.016

生产方法:电解、裂解、煤制气等

三相点:-254.4℃

液体密度(平衡状态,-252.8℃):169kg/m³

气体密度(101.325kPa,0℃):0.0899kg/m³

比容(101.325kPa,21.2℃):5.987m³/kg

气液容积比(15℃,100kPa):974L/L

压缩系数:

压力kPa

100

1000

5000·

10000

温度℃

15

50

1.0087

1.0008

1.0060

1.0057

1.0296

1.0296

1.0600

1.0555

临界温度:-234.8℃

临界压力:1664.8kPa

临界密度:66.8 kg/m³

熔化热(-254.5℃)(平衡态):48.84 kJ/kg

气化热△Hv(-249.5℃):305 kJ/kg

热值 1.4*10^8 J/kg

比热容(101.335kPa,25℃,气体):Cp=7.243kJ/(kg·K)

Cv=5.178kJ/(kg·K)

比热比(101.325kPa,25℃,气体):Cp/Cv=1.40

蒸气压力(正常态,17.703):10.67kPa

(正常态,21.621):53.33kPa

(正常态,24.249K):119.99kPa

粘度(气体,正常态,101.325kPa,0℃):0.010lmPa·S

(液体,平衡态,-252.8℃):0.040mPa·s

表面张力(平衡态,-252.8℃):3.72mN/m

导热系数(气体101.325kPa,0℃):0.1289w/(m·K)

(液体,-252.8℃):’ 1264W/(m·K)

折射系数nv(101.325kPa,25℃):1.0001265

空气中的燃烧界限:5%~75%(体积)

易燃性级别:4

毒性级别:0

易爆性级别:1

重氢在常温常压下为无色无嗅无毒可燃性气体,是普通氢的一种稳定同位素。它在通常水的氢中含0.0139%~0.0157%。其化学性质与普通氢完全相同。但质量大些,反应速度小一些。

氢气分类标准

工业氢GB/T3634-1995

H2≥99.90%(优等品)

H2≥99.50%(一等品)

H2≥99.00%(合格品)

纯 氢 GB/T7445-1995

H2≥99.99%

高纯氢GB/T7445-1995

H2≥99.999%

超高纯氢 GB/T7445-1995

H2≥99.9999%

氢气的产生由水通电产生氢气和氧气

主要性能

高燃烧性,还原剂,液态温度比氮更低

1.可燃性

纯氢的引燃温度为400℃。

氢气在空气里的燃烧,实际上是与空气里的氧气发生反应,生成水。

2H2+O2=点燃=2H2O

这一反应过程中有大量热放出,火焰呈淡蓝色(实验室里用玻璃管看不出蓝色,看到的是黄色是由于玻璃中存在Na+的结果)。燃烧时放出热量是相同条件下汽油的三倍。因此可用作高能燃料,在火箭上使用。中国长征3号火箭就用液氢燃料。

不纯的H2点燃时会发生爆炸。但有一个极限,当空气中所含氢气的体积占混合体积的4.0%-74.2%时,点燃都会产生爆炸,这个体积分数范围叫爆炸极限。

用试管收集一试管氢气,将管口靠近酒精灯,如果听到轻微的“噗”声,表明氢气是纯净的。如果听到尖锐的爆鸣声,表明氢气不纯。这时需要重新收集和检验。

如用排气法收集,则要用拇指堵住试管口一会儿,使试管内可能尚未熄灭的火焰熄灭,然后才能再收集氢气(或另取一试管收集)。收集好后,用大拇指 堵住试管口移近火焰再移开,看是否有“噗”声,直到试验表明氢气纯净为止。

氢气在空气中燃烧会发出淡蓝色的火焰,其装置就是直接在玻璃尖管中点燃,那么我们真的能看到淡蓝色的火焰吗?

在玻璃里,含钠离子,而钠离子的焰色却是黄色的,所以,用上述方法只能看到黄色的火焰,却不能看到淡蓝色的火焰。如果要实现淡蓝色的火焰,可采取以下方法:

方法一:用石英导管(天价,不适于普通中学的实验室)

方法二:用铜管(具有欺骗成分,因为铜元素的焰色为绿色,而且铜能导热,对用橡皮管连接铜管,点燃时会影响气密性)

方法三:由于黄色火焰是玻璃中的钠离子造成的,那么我们可以用类似于用焰色反应检验钾元素一样透过钴玻璃看火焰就可以排除钠的干扰了。

2.还原性

氢气与氧化铜反应,实质是氢气还原氧化铜中的铜元素,使氧化铜变为红色的金属铜。

CuO+H2=加热=Cu+H2O

CO+3H2=高温催化=CH4+H2O

在这个反应中,氧化铜失去氧变成铜,氧化铜被还原了,即氧化铜发生了还原反应。还原剂具有还原性。

根据氢气所具有的燃烧性质,它可以作为燃料,可以应用与航天、焊接、军事等方面;根据它的还原性,还可以用于冶炼某些金属材料等方面。

此外,氢气与有机物的加成反应也体现了氢气的还原性,如

CH2=CH2+H2→CH3CH3

1.还原装置

①试管口应略向下倾斜

②通入氢气的导管应伸入试管底部

③试管口不能用橡皮塞塞紧

④用酒精灯外焰加热

2.实验操作

①实验前应先通一会儿纯净的氢气,然后开始加热,防止爆炸

②实验结束后,先撤走酒精灯,继续通氢气,直至试管冷却为止。

生产方法

一 原始氢气生产方法

原始氢气是宇宙大爆炸由原始粒子形成的氢气,大部分分布在宇宙空间内和大的星球中,是恒星的核燃料,是组成宇宙中各种元素及物质的初始物质。地球上没有原始氢气因为地球的引力束缚不了它。只有它的化合物。

二 人造氢气生产方法

可分为以下几种⒈ 工业氢气生产方法:

⑴由煤和水生产氢气(生产设备煤气发生设备,变压吸附设备)

将水蒸气通过炽热的炭层:C+H2O(g)=高温=CO+H2(水煤气),再低温分离

⑵有裂化石油气生产(生产设备裂化设备,变压吸附设备,脱碳设备)

CH4=高温催化=C+2H2

⑶电解水生产(生产设备电解槽设备)

⑷工业废气。

⒉民用氢气生产方法:

⑴氨分解(生产设备汽化炉,分解炉,变压吸附设备)

⑵由活泼金属与酸(生产设备不锈钢或玻璃容器设备)

(3)强碱与铝或硅(生产设备充氢气球机设备)一般生产氢气球都用此方法。

Si+2NaOH+H2O=加热=Na2SiO3+2H2↑

(4)甲醇裂解(生产设备导热油炉,甲醇汽化裂解设备,变压吸附装置)一般用氢气量较大化工厂均用此方法。

CH3OH=高温催化=H2↑+CO↑,低温分离

⒊试验室氢气生产方法:

硫酸与锌粒(生产设备启普发生器)

4.其他

(1)由重水电解。

(2)由液氢低温精镏。

制取方法

一、实验室制法

1.用锌与稀硫酸反应

Zn+H2SO4=ZnSO4+H2↑

注意:这里不用盐酸是因为盐酸反应会挥发出氯化氢气体,制得的气体含有氯化氢杂质。

2.用铝和氢氧化钠反应制取

2Al+2NaOH+6H2O=2Na[Al(OH)4]+3H2↑

二、工业制法

一、电解水制氢 多采用铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液。阳极出氧气,阴极出氢气。该方法成本较高,但产品纯度大,可直接生产99.7%以上纯度的氢气。这种纯度的氢气常供:①电子、仪器、仪表工业中用的还原剂、保护气和对坡莫合金的热处理等,②粉末冶金工业中制钨、钼、硬质合金等用的还原剂,③制取多晶硅、锗等半导体原材料,④油脂氢化,⑤双氢内冷发电机中的冷却气等。像北京电子管厂和科学院气体厂就用水电解法制氢。利用电解饱和食盐水产生氢气

如2NaCl+2H2O=电解=2NaOH+Cl2↑+H2↑

二、水煤气法制氢 用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。像北京化工实验厂和许多地方的小氮肥厂多用此法。

三、由石油热裂的合成气和天然气制氢 石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在中国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气 也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。

四、焦炉煤气冷冻制氢 把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。此法在少数地方采用(如前苏联的Ke Mepobo工厂)。

五、电解食盐水的副产氢 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产。

利用电解饱和食盐水产生氢气

如2NaCl+2H2O=电解=2NaOH+Cl2↑+H2↑

六、酿造工业副产

用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(99.99%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制品和供外单位用。

七、铁与水蒸气反应制氢

但品质较差,此系较陈旧的方法现已基本淘汰

其他

工业上用水和红热的碳反应

C+H2O=高温=CO+H2

用铝和氢氧化钠反应制取

2Al+2NaOH+6H2O=2Na[Al(OH)4]+3H2↑

三、制取氢气的新方法

1.用氧化亚铜作催化剂并用紫外线照射从水中制取氢气。

2.用新型的钼的化合物做催化剂从水中制取氢气。

3.用光催化剂反应和超声波照射把水完全分解的方法。

4.陶瓷跟水反应制取氢气。

5.生物质快速裂解油制取氢气。

6.从微生物中提取的酶制氢气。

7.用细菌制取氢气。

8.用绿藻生产氢气。

9.有机废水发酵法生物制氢气。

10.利用太阳能从生物质和水中制取氢气。

利用太阳能从生物质和水中制取氢气是最佳的制取氢气的方法。理由是太阳能能量巨大、取之不尽、用之不竭、而且清洁、无污染、不需要开采、运输。怎样制取氢气的成本就大大降低。

11.用二氧化钛作催化剂,在激光的照射下,让水分解成氢气和氧气.

12.硼和水在高温下反应制取氢气,化学方程式为2B+6H20=====高温=====2B(OH)3+3H2↑

可燃性

在带尖嘴的导管口点燃纯净的氢气,观察火焰的颜色。然后在火焰上方罩一个冷而干燥的烧杯,过一会儿,我们可以看到,纯净的氢气在空气里安静地燃烧,产生淡蓝色的火焰(氢气在玻璃导管口燃烧时,火焰常略带黄色)。用烧杯罩在火焰的上方时,烧杯壁上有水珠生成,接触烧杯的手能感到发烫。

氢气在空气里燃烧,实际上是氢气跟空气里的氧气发生了化合反应,生成了水并放出大量的热。这个反应的化学方程式是:

2H2+O2(点燃)=2H2O

取一个一端开口,另一端钻有小孔的纸筒(或塑料筒等),用纸团堵住小孔,用向下排空气法收集氢气,使纸筒内充满氢气。把氢气发生装置移开,拿掉堵小孔的纸团,用燃着的木条在小孔处点火,注意有什么现象发生。(做这个实验时,人要离得远些,注意安全。)

我们可以看到,刚点燃时,氢气安静地燃烧,过一小会儿,突然听到“砰”的一声响,爆炸的气浪把纸筒高高炸起。

实验测定,空气里如果混入氢气的体积达到总体积的4%~74.2%,点燃时就会发生爆炸。这个范围叫做氢气的爆炸极限。实际上,任何可燃气体或可燃的粉尘如果跟空气充分混合,遇火时都有可能发生爆炸。因此,当可燃性气体(如氢气、液化石油气、煤气等)发生泄漏时,应杜绝一切火源、火星,禁止产生电火花,以防发生爆炸。

正是由于这个原因,我们在使用氢气时,要特别注意安全。点燃氢气前,一定要检验氢气的纯度。

用排水法收集一试管氢气,用拇指堵住,移近火焰,移开拇指点火,如果听到尖锐的爆鸣声,就表明氢气不纯,需要再收集,再检验,直到响声很小,只有“扑”的一声才表明氢气已纯净。如果用向下排空气法收集氢气,经检验不纯而需要再检验时,应该用拇指堵住试管口一会儿(以防点燃产生氢气的试管)然后再收集氢气检验纯度,否则会发生爆炸的危险。因为刚检验过纯度的试管内,氢气火焰可能还没有熄灭,如果立刻就用这个试管去收集氢气,氢气火焰可能会点燃氢气发生器里尚混有空气的氢气,使氢气发生器发生爆炸。用拇指堵住试管口一会儿,就使试管内未熄灭的氢气火焰因缺氧气而熄灭。

另外氢气在氧气过量和低温有催化剂的条件下点燃可生成过氧化氢(H2O2)(氧元素的化合价为-1)

应用

氢是主要的工业原料,也是最重要的工业气体和特种气体,在石油化工、电子工业、冶金工业、食品加工、浮法玻璃、精细有机合成、航空航天等方面有着广泛的应用。同时,氢也是一种理想的二次能源( 二次能源是指必须由一种初级能源如太阳能、煤炭等来制取的能源)。在一般情况下,氢极易与氧结合。这种特性使其成为天然的还原剂使用于防止出现氧化的生产中。在玻璃制造的高温加工过程及电子微芯片的制造中,在氮气保护气中加入氢以去除残余的氧。在石化工业中,需加氢通过去硫和氢化裂解来提炼原油。氢的另一个重要的用途是对人造黄油、食用油、洗发精、润滑剂、家庭清洁剂及其它产品中的脂肪氢化。由于氢的高燃料性,航天工业使用液氢作为燃料。

主要用途及应用行业

用途

核研究、氘核加速器的轰击粒子、示踪剂、可以做气相色谱氢焰化验原料。

应用行业

石油精炼

浮法玻璃

电子

食品

化工生产

航天

汽车业

包装、贮存和运输

包装方式:氢气拖车/瓶组/钢瓶

运输方式:氢的贮运有四种方式可供选择,即气态贮运、液态贮运、金属氢化物贮运和微球贮运。目前,实际应用的只有前三种,微球贮运方式尚在研究中。

安全注意事项

氢气是一种无色、无嗅、无毒、易燃易爆的气体,和氟、氯、氧、一氧化碳以及空气混合均有爆炸的危险,其中,氢与氟的混合物在低温和黑暗环境就能发生自发性爆炸,与氯的混合比为1:1时,在光照下也可爆炸。氢由于无色无味,燃烧时火焰是透明的,因此其存在不易被感官发现,在许多情况下向氢气中加入乙硫醇,以便感官察觉,并可同时付予火焰以颜色。氢虽无毒,在生理上对人体是惰性的,但若空气中氢含量增高,将引起缺氧性窒息。与所有低温液体一样,直接接触液氢将引起冻伤。液氢外溢并突然大面积蒸发还会造成环境缺氧,并有可能和空气一起形成爆炸混合物,引发燃烧爆炸事故。

危险特性

与空气混合能形成爆炸性混合物,遇热或明火即会发生爆炸。气体比空气轻,在室内使用和储存时,漏气上升滞留屋顶不易排出,遇火星会引起爆炸。氢气与氟、氯、溴等卤素会剧烈反应。

灭火方法:切断气源。若不能立即切断气源,则不允许熄灭正在燃烧的气体。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳、干粉。

泄漏应急处理

迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。合理通风,加速扩散。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。漏气容器要妥善处理,修复、检验后再用。

储运注意事项

易燃压缩气体。储存于阴凉、通风的仓间内。仓内温度不宜超过30℃。远离火种、热源。防止阳光直射。应与氧气、压缩空气、卤素(氟、氯、溴)、氧化剂等分开存放。切忌混储混运。储存间内的照明、通风等设施应采用防爆型,开关设在仓外,配备相应品种和数量的消防器材。禁止使用易产生火花的机械设备工具。验收时要注意品名,注意验瓶日期,先进仓的先发用。搬运时轻装轻卸,防止钢瓶及附件破损。

优点

一,资源丰富。以水为原料,电解便可获得。水资源在地球上相对主要燃料石油,煤也较丰富。

二,热值高。氢燃烧的热值高居各种燃料之冠,据测定,每千克氢燃烧放出的热量为1.4*10^8焦耳,为石油热值的3倍多。因此,它贮存体积小,携带量大,行程远。

三,氢为燃料最洁净。氢的燃烧产物是水,对环境不产生任何污染。相反,以汽油,柴油为燃料的车辆,排放大量氮氧化物,四乙基铅[Pb(C2H5)4],会导致酸雨,酸雾和严重的铅中毒。更重要的是,废气中还含有3,4-苯并芘的强致癌物质,污染大气,危害健康。因此,近年来世界各国对以氢为新型能源的研究颇为重视。日本于1984年5月24日在富士高速公路以每小时200千米速度首次试车(以氢为燃料)成功。

缺点

1.氢气要安全储藏和运输并不容易,它重量轻、难捉摸、扩散速度快,需低温液化,会导致阀门堵塞并形成不必要的压力

科学家用农业废弃物制取燃料氢

氢作为一种清洁能源已被广泛重视,并普遍作为燃料电池的动力源,然而制取氢的传统方法成本高,技术复杂。美国研究人员日前开发出一种利用木屑或农业废弃物的纤维素制取氢的技术,有望解决氢制取费用高的难题。

来自美国弗吉尼亚理工大学、橡树岭国家实验室等机构的研究人员发表报告说,他们把14种酶、1种辅酶、纤维素原料和加热到32摄氏度左右的水混合,制造出纯度足以驱动燃料电池的氢气。

研究人员说,他们的“一锅烩”过程有不少进步,比如采用与众不同的酶混合物,还提高了氢气的生成速度。此外,除了把纤维素中分解出的糖转化为化学能量外,这一过程还可产出高质量的氢。

研究人员说,他们主要使用从木屑中分解的纤维素原料制取氢,不过也可以使用稻草、废弃的庄稼秆等。木屑或农业废弃物资源非常丰富,利用它们制取氢,不仅可降低制造成本,而且将大大扩大生产氢的原料资源。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/9 7:28:53