词条 | 零点定理 |
释义 | 设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)使f(ξ)=0。 证明:不妨设f(a)<0,f(b)>0.令 E={x|f(x)<0,x∈[a,b]}. 由f(a)<0知E≠Φ,且b为E的一个上界,于是根据确界存在原理, 存在ξ=supE∈[a,b]. 下证f(ξ)=0(注意到f(a)≠0,f(b)≠0,故此时必有ξ∈(a,b).).事实上, (i)若f(ξ)<0,则ξ∈[a,b).由函数连续的局部保号性知 存在δ>0,对x1∈(ξ,ξ+δ):f(x)<0→存在x1∈E:x1>supE, 这与supE为E的上界矛盾; (ii)若f(ξ)>0,则ξ∈(a,b].仍由函数连续的局部保号性知 存在δ>0,对x1∈(ξ-δ,ξ):f(x)>0→存在x1为E的一个上界,且x1<ξ, 这又与supE为E的最小上界矛盾。 综合(i)(ii),即推得f(ξ)=0。 我们还可以利用闭区间套定理来证明零点定理。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。