词条 | t检验 |
释义 | T检验(T Test) 什么是T检验 T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。 T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。 T检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新政策。戈特特于1908年在Biometrika上公布T检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。实际上,戈斯特的真实身份不只是其它统计学家不知道,连其老板也不知道。 T检验的适用条件:正态分布资料 T检验注意事项 要有严密的抽样设计随机、均衡、可比 选用的检验方法必须符合其适用条件(注意:t检验的前提是资料服从正态分布) 单侧检验和双侧检验 单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。 假设检验的结论不能绝对化 不能拒绝H0,有可能是样本数量不够拒绝H0 ,有可能犯第Ⅰ类错误 正确理解P值与差别有无统计学意义 P越小,不是说明实际差别越大,而是说越有理由拒绝H0 ,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同 假设检验和可信区间的关系结论具有一致性差异:提供的信息不同区间估计给出总体均值可能取值范围,但不给出确切的概率值,假设检验可以给出H0成立与否的概率。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。