词条 | 拉依达准则 |
释义 | 在整理试验数据时,往往会遇到这样的情况,即在一组试验数据里,发现少数几个偏差特别大的可疑数据,这类数据称为Outlier或Exceptional Data,他们往往是由于过失误差引起。 对于可疑数据的取舍要慎重。在试验进行中时,若发现异常数据,应立即停止试验,分析原因并及时纠正错误;当为试验结束后时,应先找原因,在对数据进行取舍。 这类数据的不能清楚地判定原因时,可以借助一些统计方法进行验证处理,方法很多,向楼主提到的"拉依达准则"和"格拉布斯准则",还有如狄克逊准则,肖维勒准则、t检验法,F检验法等。这些方法,都有各自的特点,例如,拉依达准则不能检验样本量较小(显著性水平为0.1时,n必须大于10)的情况,格拉布斯准则则可以检验较少的数据。在国际上,常推荐格拉布斯准则和狄克逊准则。 但对于异常数据一定要慎重,不能任意的抛弃和修改。往往通过对异常数据的观察,可以发现引起系统误差的原因,进而改进过程和试验。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。