请输入您要查询的百科知识:

 

词条 DNA
释义

§ 科技名词定义

中文名称:脱氧核糖核酸

英文名称:deoxyribonucleic acid;DNA

定义1:一类带有遗传信息的生物大分子。

由4种主要的脱氧核苷酸(dAMP、dGMP、dCMT和dTMP)通过3′,5′-磷酸二酯键连接而成。它们的组成和排列不同,显示不同的生物功能,如编码功能、复制和转录的调控功能等。排列的变异可能产生一系列疾病。

所属学科:生物化学与分子生物学(一级学科);核酸与基因(二级学科)

定义2:主要由4 种脱氧核糖核苷酸按一定的顺序,以3′,5′-磷酸二酯键连接而成的一类核酸,是生物遗传信息的载体。

所属学科:水产学(一级学科);水产生物育种学(二级学科)

定义3:由四种脱氧核糖核苷酸经磷酸二酯键连接而成的长链聚合物。

是遗传信息载体。

所属学科:细胞生物学(一级学科);细胞化学(二级学科)

定义4:由四种脱氧核糖核苷酸经磷酸二酯键连接而成的长链聚合物,是遗传信息的载体。

所属学科:遗传学(一级学科);分子遗传学(二级学科)

本内容由全国科学技术名词审定委员会审定公布

§ 简介

DNA

DNA(为英文Deoxyribonucleic acid的缩写),又称脱氧核糖核酸,是染色体的主要化学成分,同时也是基因组成的,有时被称为“遗传微粒”。DNA是一种分子,可组成遗传指令,以引导生物发育与生命机能运作。主要功能是长期性的资讯储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与RNA所需。带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。

单体脱氧核糖核酸聚合而成的聚合体——脱氧核糖核酸链,也被称为DNA。在繁殖过程中,父代把它们自己DNA的一部分(通常一半,即DNA双链中的一条)复制传递到子代中,从而完成性状的传播。因此,化学物质DNA会被称为“遗传微粒”。原核细胞的拟核是一个长DNA分子。真核细胞核中有不止一个染色体,每条染色体上含有一个或两个DNA。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA,极少数为RNA。

DNA是一种长链聚合物,组成单位称为核苷酸,而糖类与磷酸分子借由酯键相连,组成其长链骨架。每个糖分子都与四种碱基里的其中一种相接,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,是蛋白质氨基酸序列合成的依据。读取密码的过程称为转录,是根据DNA序列复制出一段称为RNA的核酸分子。多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。

四链体DNA

Sundpuist和Klug在模拟1种原生动物棘毛虫的端粒DNA时,人工合成了1段DNA序列,发现在一定条件下模拟的富G单链DNA可形成四链体DNA结构。由此推测染色体端粒尾的单链之间也形成了四链体。Kang等人分别用实验证实在晶体和溶液中,富G DNA也能够形成四链体DNA结构。

四链体DNA的基本结构单位是G-四联体,即在四联体的中心有1个由4个带负电荷的羧基氧原子围成的“口袋”通过G-四联体的堆积可以形成分子内或分子间的右手螺旋,与DNA双螺旋结构比较,G-四联体螺旋有2个显著的特点:1、它的稳定性决定于口袋内所结合的阳离子种类,已知k离子的结合使四联体螺旋最稳定;2、它的热力学和动力学性质都很稳定。就目前对一些生物的DNA序列分析得知,富鸟嘌呤的DNA序列多见于一些在功能上及进化上都相当保守的基因组区域,许多研究表明,富鸟嘌呤DNA链所形成的G-DNA可能是作为分子之间相互识别的元件之一,在生物体细胞中起着一些特殊作用。

§ 主要类别

单链DNA

单链DNA(single-stranded DNA)大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。某些噬菌体粒子内含有单链环状的DNA,这样的噬菌体DNA在细胞内增殖时则形成双链DNA。

闭环DNA

闭环DNA(closed circular DNA)没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。

连接DNA

连接DNA (Linker DNA):核小体中除146bp核心DNA 外的所有DNA。

模板DNA

模板DNA可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好).就模板DNA而言,影响PCR的主要因素是模板的数量和纯度。

互补DNA

互补DNA(cDNA,complementary DNA )构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子.因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的.所以一个cDNA分子就代表一个基因.但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子.所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列---内含子。

§ 历史

最早分离出DNA的弗雷德里希·米歇尔是一名瑞士医生,他在1869年,从废弃绷带里所残留的脓液中,发现一些只有显微镜可观察的物质。由于这些物质位于细胞核中,因此米歇尔称之为“核素”(nuclein)。到了1919年,菲巴斯·利文进一步辨识出组成DNA的碱基、糖类以及磷酸核苷酸单元,他认为DNA可能是许多核苷酸经由磷酸基团的联结,而串联在一起。不过他所提出概念中,DNA长链较短,且其中的碱基是以固定顺序重复排列。1937年,威廉·阿斯特伯里完成了第一张X光衍射图,阐明了DNA结构的规律性。

1928年,弗雷德里克·格里菲斯从格里菲斯实验中发现,平滑型的肺炎球菌,能转变成为粗糙型的同种细菌,方法是将已死的平滑型与粗糙型活体混合在一起。这种现象称为“转型”。但造成此现象的因子,也就是DNA,是直到1943年,才由奥斯瓦尔德·埃弗里等人所辨识出来。1953年,阿弗雷德·赫希与玛莎·蔡斯确认了DNA的遗传功能,他们在赫希-蔡斯实验中发现,DNA是T2噬菌体的遗传物质。

剑桥大学里一面纪念克里克与DNA结构的彩绘窗。到了1953年,当时在卡文迪许实验室的詹姆斯·沃森与佛朗西斯·克里克,依据伦敦国王学院的罗莎琳·富兰克林所拍摄的X光衍射图及相关资料,提出了最早的DNA结构精确模型,并发表于《自然》期刊。五篇关于此模型的实验证据论文,也同时以同一主题发表于《自然》。其中包括富兰克林与雷蒙·葛斯林的论文,此文所附带的X光衍射图,是沃森与克里克阐明DNA结构的关键证据。此外莫里斯·威尔金斯团队也是同期论文的发表者之一。富兰克林与葛斯林随后又提出了A型与B型DNA双螺旋结构之间的差异。1962年,沃森、克里克以及威尔金斯共同获得了诺贝尔生理学或医学奖。

克里克在1957年的一场演说中,提出了分子生物学的中心法则,预测了DNA、RNA以及蛋白质之间的关系,并阐述了“转接子假说”(即后来的tRNA)。1958年,马修·梅瑟生与富兰克林·史达在梅瑟生-史达实验中,确认了DNA的复制机制。后来克里克团队的研究显示,遗传密码是由三个碱基以不重复的方式所组成,称为密码子。这些密码子所构成的遗传密码,最后是由哈尔·葛宾·科拉纳、罗伯特·W·霍利以及马歇尔·沃伦·尼伦伯格解出。为了测出所有人类的DNA序列,人类基因组计划于1990年代展开。到了2001年,多国合作的国际团队与私人企业塞雷拉基因组公司,分别将人类基因组序列草图发表于《自然》与《科学》两份期刊。

§ 内部解密

DNA

DNA是由四种东西组成,这四种东西的总名字叫核苷酸,就像四个兄弟一样,它们都姓核苷酸,但名字却有所不同,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T),这四种名字很难记,不过只要记住DNA是由四种核苷酸只是随便聚在一起的、而且它们相互的连接没有什么规律,但后来核苷酸其实不一样,而且它们相互组合的方式也千变万化,大有奥秘。现在,人们已基本上了解了遗传是如何发生的。20世纪的生物学研究发现:人体是由细胞构成的,细胞由细胞膜、细胞质和细胞核等组成。已知在细胞核中有一种物质叫染色体,它主要由一些叫做脱氧核糖核酸(DNA)的物质组成。

生物的遗传物质存在于所有的细胞中,这种物质叫核酸。核酸由核苷酸聚合而成。每个核苷酸又由磷酸、核糖和碱基构成。碱基有五种,分别为腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U)。每个核苷酸只含有这五种碱基中的一种。

单个的核苷酸连成一条链,两条核苷酸链按一定的顺序排列,然后再扭成“麻花”样,就构成脱氧核糖核酸(DNA)的分子结构。在这个结构中,每三个碱基可以组成一个遗传的“密码”,而一个DNA上的碱基多达几百万,所以每个DNA就是一个大大的遗传密码本,里面所藏的遗传信息多得数不清,这种DNA分子就存在于细胞核中的染色体上。它们会随着细胞分裂传递遗传密码。

人的遗传性状由密码来传递。人大概有2.5万个基因,而每个基因是由密码来决定的。人的基因中既有相同的部分,又有不同的部分。不同的部分决定人与人的区别,即人的多样性。人的DNA共有30亿个遗传密码,排列组成约2.5万个基因。

§ 具体结构

DNA

DNA是由许多脱氧核苷酸残基按一定顺序彼此用3’,5’-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。

一级结构

DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975 年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。

二级结构

1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类。

一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA 双螺旋DNA1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905—  )测定了DNA中4种碱基的含量,发现其中腺膘呤与胸腺嘧啶的数量相等,鸟膘呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺膘呤与胸腺嘧啶配对、鸟膘呤与胞嘧啶配对的概念。

§ 复制

DNA

DNA是遗传信息的载体,故亲代DNA必须以自身分子为模板准确的复制成两个拷贝,并分配到两个子细胞中去,完成其遗传信息载体的使命。而DNA的双链结构对于维持这类遗传物质的稳定性和复制的准确性都是极为重要的。

(一)DNA的半保留复制

Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,发现DNA在复制过程中碱基间的氢键首先断裂(通过解旋酶),双螺旋结构解旋分开,每条链分别作模板合成新链。由于每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。

(二)DNA复制过程

DNA复制过程大致可以分为复制的引发,DNA链的延伸和DNA复制的终止三个阶段。

1)DNA复制的引发

复制的引发(Priming)阶段包括DNA复制起点双链解开,通过转录激活步骤合成RNA分子,RNA引物的合成,DNA聚合酶将第一个脱氧核苷酸加到引物RNA的3'-OH末端复制引发的关键步骤就是前导链DNA的合成,一旦前导链DNA的聚合作用开始,滞后链上的DNA合成也随着开始,在所有前导链开始聚合之前有一必需的步骤就是由RNA聚合酶(不是引物酶)沿滞后链模板转录一短的RNA分子。在有些DNA复制中,(如质粒ColE),该RNA分子经过加式成为DNA复制的引物。但是,在大部分DNA复制中,该RNA分子没有引物作用。它的作用似乎只是分开两条DNA链,暴露出某些特定序列以便引发体与之结合,在前导链模板DNA上开始合成RNA引物,这个过程称为转录激活(transcriptional activation),在前导链的复制引发过程中还需要其他一些蛋白质,如大肠杆菌的dnaA蛋白。这两种蛋白质可以和复制起点处DNA上高度保守的4个9bp长的序列结合,其具体功能尚不清楚。可能是这些蛋白质与DNA复制起点结合后能促进DNA聚合酶Ⅲ复合体的七种蛋白质在复制起点处装配成有功能的全酶。DNA复制开始时,DNA螺旋酶首先在复制起点处将双链DNA解开,通过转录激活合成的RNA分子也起分离两条DNA链的作用,然后单链DNA结合蛋白质结合在被解开的链上。由复制因子X(n蛋白),复制因子Y(n'蛋白),n"蛋白,i蛋白,dnaB蛋白和dnaC蛋白等6种蛋白质组成的引发前体(preprimosome),在单链DNA结合蛋白的作用下与单链DNA结合生成中间物,这是一种前引发过程。引发前体进一步与引物酶(primase)组装成引发体(primosome)。引发体可以在单链DNA上移动,在dnaB亚基的作用下识别DNA复制起点位置。首先在前导链上由引物酶催化合成一段RNA引物,然后,引发体在滞后链上沿5'→3'方向不停的移动(这是一种相对移动,也可能是滞后链模板在移动,见后),在一定距离上反复合成RNA引物供DNA聚合酶Ⅲ合成冈崎片段使用,引发体中许多蛋白因子的功能尚不清楚。但是,这些成份必须协同工作才能使引发体在滞后链上移动,识别合适的引物合成位置,并将核苷酸在引发位置上聚合成RNA引物。由于引发体在滞后链模板上的移动方向与其合成引物的方向相反,所以在滞后链上所合成的RNA引物非常短,一般只有3-5个核苷酸长。而且,在同一种生物体细胞中这些引物都具有相似的序列,表明引物酶要在DNA滞后链模板上比较特定的位置(序列)上才能合成RNA引物。

为什么需要有RNA引物来引发DNA复制呢?这可能尽量减少DNA复制起始处的突变有关。DNA复制开始处的几个核苷酸最容易出现差错,因此,用RNA引物即使出现差错最后也要被DNA聚合酶Ⅰ切除,提高了DNA复制的准确性。RNA引物形成后,由DNA聚合酶Ⅲ催化将第一个脱氧核苷酸按碱基互补原则加在RNA引物3'-OH端而进入DNA链的延伸阶段。

2)DNA链的延伸

DNA新生链的合成由DNA聚合酶Ⅲ所催化,然而,DNA必须由螺旋酶在复制叉处边移动边解开双链。这样就产生了一种拓扑学上的问题:由于DNA的解链,在DNA双链区势必产生正超螺旋,在环状DNA中更为明显,当达到一定程度后就会造成复制叉难再继续前进,从而终止DNA复制。但是,在细胞内DNA复制不会因出现拓扑学问题而停止。有两种机制可以防止这种现象发生:[1]DNA在生物细胞中本身就是超螺旋,当DNA解链而产生正超螺旋时,可以被原来存在的负超螺旋所中和;[2]DNA拓扑异构酶Ⅰ要以打开一条链,使正超螺旋状态转变成松弛状态,而DNA拓扑异构酶Ⅱ(旋转酶)可以在DNA解链前方不停地继续将负超螺旋引入双链DNA。这两种机制保证了无论是环状DNA还是开环DNA的复制顺利的解链,再由DNA聚合酶Ⅲ合成新的DNA链。前已述及DNA生长链的延伸主要由DNA聚合酶催化,该酶是由7种蛋白质(多肽)组成的聚合体,称为全酶。全酶中所有亚基对完成DNA复制都是必需的。α亚基具有聚合功能和5'→3'外切酶活性,ε亚基具有3'→5'外切酶活性。另外,全酶中还有ATP分子它是DNA聚合酶Ⅲ催化第一个脱氧核糖核苷酸连接在RNA引物上所必需的,其他亚基的功能尚不清楚。DNA的复制过程

在DNA复制叉处要能由两套DNA聚合酶Ⅲ在同一时间分别进行复制DNA前导链和滞后链。如果滞后链模板环绕DNA聚合酶Ⅲ全酶,并通过DNA聚合酶Ⅲ,然后再折向与未解链的双链DNA在同一方向上,则滞后链的合成可以和前导链的合成在同一方向上进行。

这样,当DNA聚合酶Ⅲ沿着滞后链模板移动时,由特异的引物酶催化合成的RNA引物即可以由DNA聚合酶Ⅲ所延伸。当合成的DNA链到达前一次合成的冈崎片段的位置时,滞后链模板及刚合成的冈崎片断便从DNA聚合酶Ⅲ上释放出来。这时,由于复制叉继续向前运动,便产生了又一段单链的滞后链模板,它重新环绕DNA聚合酶Ⅲ全酶,并通过DNA聚合酶Ⅲ开始合成新的滞后链冈崎片段。通过这样的机制,前导链的合成不会超过滞后链太多(最后只有一个冈崎片段的长度)。而且,这样引发体在DNA链上和DNA聚合酶Ⅲ以同一速度移动。

按上述DNA复制的机制,在复制叉附近,形成了以两套DNA聚合酶Ⅲ全酶分子、引发体和螺旋构成的类似核糖体大小的复合体,称为DNA复制体(replisome)。复制体在DNA前导链模板和滞后链模板上移动时便合成了连续的DNA前导链和由许多冈崎片段组成的滞后链。在DNA合成延伸过程中主要是DNA聚合酶Ⅲ的作用。当冈崎片段形成后,DNA聚合酶Ⅰ通过其5'→3'外切酶活性切除冈崎片段上的RNA引物,同时,利用后一个冈崎片段作为引物由5'→3'合成DNA。最后两个冈崎片段由DNA连接酶将其接起来,形成完整的DNA滞后链。

3)DNA复制的终止

过去认为,DNA一旦复制开始,就会将该DNA分子全部复制完毕,才终止其DNA复制。但最近的实验表明,在DNA上也存在着复制终止位点,DNA复制将在复制终止位点处终止,并不一定等全部DNA合成完毕。但目前对复制终止位点的结构和功能了解甚少在NDA复制终止阶段令人困惑的一个问题是,线性DNA分子两端是如何完成其复制的?已知DNA复制都要有RNA引物参与。当RNA引物被切除后,中间所遗留的间隙由DNA聚合Ⅰ所填充。但是,在线性分子的两端以5'→3'为模板的滞后链的合成,其末端的RNA引物被切除后是无法被DNA聚合酶所填充的。

在研究T7DNA复制时,这个问题部分地得到了解决。T7DNA两端的DNA序列区有160bp长的序列完全相同。而且,在T7DNA复制时,产生的子代DNA分子不是一个单位T7DNA长度,而是许多单位长度的T7DNA首尾连接在一起。T7DNA两个子代DNA分子都会有一个3'端单链尾巴,两个子代DNA的3'端尾巴以互补结合形成两个单位T7DNA的线性连接。然后由DNA聚合酶Ⅰ填充和DNA连接酶连接后,继续复制便形成四个单位长度的T7DNA分子。这样复制下去,便可形成多个单位长度的T7DNA分子。这样的T7DNA分子可以被特异的内切酶切开,用DNA聚合酶填充与亲代DNA完全一样的双链T7DNA分子。

在研究痘病毒复制时,发现了线性DNA分子完成末端复制的第二种方式。痘病毒DNA在两端都形成发夹环状结构。DNA复制时,在线性分子中间的一个复制起点开始,双向进行,将发夹环状结构变成双链环状DNA。然后,在发夹的中央将不同DNA链切开,使DNA分子变性,双链分开。这样,在每个分子两端形成一个单链尾端要以自我互补,形成完整的发夹结构,与亲代DNA分子一样。在真核生物染色体线性DNA分子复制时,尚不清楚末端的复制过程是怎样进行的。也可能像痘病毒那样形成发夹结构而进行复制。但最近的实验表明,真核生物染色体末端DNA复制是由一种特殊的酶将一个新的末端DNA序列加在刚刚完成复制的DNA末端。这种机制首先在四膜虫中发现。该生物细胞的线性DNA分子末端有30-70拷贝的5'TTGGGG3'序列,该细胞中存在一种酶可以将TTGGGG序列加在事先已存在的单键DNA末端的TTGGGG序列上。这样有较长的末端单链DNA,可以被引物酶重新引发或其他的酶蛋白引发而合成RNA引物,并由DNA聚合酶将其变成双链DNA。这样就可以避免其DNA随着复制的不断进行而逐渐变短。

在环状DNA的复制的末端终止阶段则不存在上述问题。环状DNA复制到最后,由DNA拓扑异构酶Ⅱ切开双链DNA,将两个DNA分子分开成为两个完整的与亲代DNA分子一样的子代DNA。

滚环复制:滚环式复制(rolling circle replication)是噬菌体中常见的DNA复制方式。滚环式复制的一个特点是以一条环状单链DNA为模板,进行新的DNA环状分子合成。噬菌体的双链DNA环状分子先在一条单链的复制起点上产生一个切口(nick),然后以另一条单链为模板不断地合成新的单链。释放出的新合成的单链或是先复制成双链DNA,被酶切割成单位长度后,再形成环状双链DNA分子;或是释放出的新合成的单链DNA,先被酶切割成单位长度形成单链环状DNA分子后再复制成双链环状DNA分子。

(三)端粒和端粒酶

1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。

§ 损害

有许多不同种类的突变原可对DNA造成损害,其中包括氧化剂、烷化剂,以及高能电磁辐射,如紫外线与X射线。不同的突变原对DNA造成不同类型的损害,举例而言,紫外线会造成胸腺嘧啶二聚体的形成,并与相邻的碱基产生交叉,进而使DNA发生损害。另一方面,氧化剂如自由基或过氧化氢,可造成多种不同形态的损害,尤其可对鸟苷进行碱基修饰,并且使双股分解。根据估计,在一个人类细胞中,每天大约有500个碱基遭受氧化损害。在各种氧化损害当中,以双股分解最为危险,此种损害难以修复,且可造成DNA序列的点突变、插入与删除,以及染色体易位。

许多突变原可嵌入相邻的两个碱基对之间,这些嵌入剂大多是芳香性分子及平面分子,包括乙锭、道诺霉素、阿霉素与沙利窦迈。必须先使碱基之间的空隙变大,才能使嵌入剂置入碱基对之间,整体而言,DNA会因为双螺旋解开而扭曲变形。结构改变会使转录作用与DNA复制过程受到抑制,进而导致毒害与突变。因此DNA嵌入剂通常也是致癌物,常见的例子有二醇环氧苯并芘、吖啶、黄曲毒素与溴化乙锭等。但是这些物质也因为能够抑制DNA的转录与复制,而可应用于化学治疗中,用以抑制癌症细胞的快速生长情形。

§ 分布功能

原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。

§ 技术应用

DNA

20世纪50年代,DNA双螺旋结构被阐明,揭开了生命科学的新篇章,开创了科学技术的新时代。随后,遗传的分子机理――DNA复制、遗传密码、遗传信息传递的中心法则、作为遗传的基本单位和细胞工程蓝图的基因以及基因表达的调控相继被认识。至此,人们已完全认识到掌握所有生物命运的东西就是DNA和它所包含的基因,生物的进化过程和生命过程的不同,就是因为DNA和基因运作轨迹不同所致。知道DNA的重大作用和价值后,生命科学家首先想到能否在某些与人类利益密切相关的方面打破自然遗传的铁律,让患病者的基因改邪归正以达治病目的,把不同来源的基因片段进行“嫁接”以产生新品种和新品质。于是,一个充满了诱惑力的科学幻想奇迹般地成为现实。这是发生在20世纪70年代初的事情。

实现这一科学奇迹的科技手段就是DNA重组技术。1972年,美国科学家保罗·伯格首次成功地重组了世界上第一批DNA分子,标志着DNA重组技术――基因工程作为现代生物工程的基础,成为现代生物技术和生命科学的基础与核心。DNA重组技术的具体内容就是采用人工手段将不同来源的含某种特定基因的DNA片段进行重组,以达到改变生物基因类型和获得特定基因产物的目的的一种高科学技术。到了20世纪70年代中后期,由于出现了工程菌以及实现DNA重组和后处理都有工程化的性质,基因工程或遗传工程作为DNA重组技术的代名词被广泛使用。现在,基因工程还包括基因组的改造、核酸序列分析、分子进化分析、分子免疫学、基因克隆、基因诊断和基因治疗等内容。可以说,DNA重组技术创立近 30多年来所获得的丰硕成果已经把人们带进了一个不可思议的梦幻般的科学世界,使人类获得了打开生命奥秘和防病治病“魔盒”的金钥匙。

DNA重组技术已经取得的成果是多方面的。到20世纪末,DNA重组技术最大的应用领域在医药方面,包括活性多肽、蛋白质和疫苗的生产,疾病发生机理、诊断和治疗,新基因的分离以及环境监测与净化。

许多活性多肽和蛋白质都具有治疗和预防疾病的作用,它们都是从相应的基因中产生的。但是由于在组织细胞内产量极微,所以采用常规方法很难获得足够量供临床应用。基因工程则突破了这一局限性,能够大量生产这类多肽和蛋白质,已成功地生产出治疗糖尿病和精神分裂症的胰岛素,对血癌和某些实体肿瘤有疗效的抗病毒剂――干扰素,治疗侏儒症的人体生长激素,治疗肢端肥大症和急性胰腺炎的生长激素释放抑制因子等100多种产品。基因工程还可将有关抗原的DNA导入活的微生物,这种微生物在受免疫应激后的宿主体内生长可产生弱毒活疫苗,具有抗原刺激剂量大、且持续时间长等优点。在研制的基因工程疫苗就有数十种之多,在对付细菌方面有针对麻风杆菌、百日咳杆菌、淋球菌、脑膜炎双球菌等的疫苗;在对付病毒方面有针对甲型肝炎、乙型肝炎、巨细胞病毒、单纯疱疹、流感、人体免疫缺陷病毒等的疫苗。中国乙肝病毒携带者和乙肝患者多达一二亿,这一情况更促使了中国科学家自行成功研制出乙肝疫苗,取得了巨大的社会效益和经济效益。

抗体是人体免疫系统防病抗病的主要武器之一,20世纪70年代创立的单克隆抗体技术在防病抗病方面虽然发挥了重要作用,但由于人源性单抗很难获得,使得单抗在临床上的应用受到限制。为解决此问题,近年来科学家采用DNA重组技术已获得了人源性抗体,这种抗体既可保证它与抗原结合的专一性和亲合力,又能保证正常功能的发挥。已有多种这样的抗体进行了临床试验,如抗HER-2人源化单抗治疗乳腺癌已进入Ⅲ期试验,抗IGE人源化单抗治疗哮喘病已进入Ⅱ期试验。

抗生素在治疗疾病上起到了重要作用,随着抗生素数量的增加,用传统方法发现新抗生素的几率越来越低。为了获取更多的新型抗生素,采用DNA重组技术已成为重要手段之一。人们已获得数十种基因工程“杂合”的抗生素,为临床应用开辟了新的治疗途径。值得指出的是,以上所述基因工程多肽、蛋白质、疫苗、抗生素等防治药物不仅在有效控制疾病,而且在避免毒副作用方面也往往优于以传统方法生产的同类药品,因而更受人们青睐。

人类疾病都直接或间接与基因相关,在基因水平上对疾病进行诊断和治疗,则既可达到病因诊断的准确性和原始 性,又可使诊断和治疗工作达到特异性强、灵敏度高、简便快速的目的。于基因水平进行诊断和治疗在专业上称为基因诊断和基因治疗。基因诊断作为第四代临床诊断技术已被广泛应用于对遗传病、肿瘤、心脑血管疾病、病毒细菌寄生虫病和职业病等的诊断;而基因治疗的目标则是通过DNA重组技术创建具有特定功能的基因重组体,以补偿失去功能的基因的作用,或是增加某种功能以利对异常细胞进行矫正或消灭。在理论上,基因治疗是治本治愈而无任何毒副作用的疗法。不过,尽管国际上已有100多个基因治疗方案正处于临床试验阶段,但基因治疗在理论和技术上的一些难题仍使这种治疗方法离大规模应用还有一段很长的距离。不论是确定基因病因还是实施基因诊断、基因治疗、研究疾病发生机理,关键的先决条件是要了解特定疾病的相关基因。随着“人类基因组计划”的临近完成,科学家们对人体全部基因将会获得全面的了解,这就为运用基因重组技术造逼于人类健康事业创造了条件。

不过,虽然基因技术向人类展示了它奇妙的“魔术师”般的魅力,但也有大量的科学家对这种技术的发展予以人类伦理和生态演化的自然法则的冲击表示出极大的担忧。从理论上来讲,这种技术发展的一个极致就是使人类拥有了创造任何生命形态或从未有过的生物的能力。人们能够想像这将是怎样的结果吗?

§ 亲子鉴定

DNA

鉴定亲子关系用得最多的是DNA分型鉴定。人的血液、毛发、唾液、口腔细胞等都可以用于用亲子鉴定,十分方便。 一个人有23对(46条)染色体,同一对染色体同一位置上的一对基因称为等位基因,一般一个来自父亲,一个来自母亲。如果检测到某个DNA位点的等位基因,一个与母亲相同,另一个就应与父亲相同,否则就存在疑问了。利用DNA进行亲子鉴定,只要作十几至几十个DNA位点作检测,如果全部一样,就可以确定亲子关系,如果有3个以上的位点不同,则可排除亲子关系,有一两个位点不同,则应考虑基因突变的可能,加做一些位点的检测进行辨别。DNA亲子鉴定,否定亲子关系的准确率几近100%,肯定亲子关系的准确率可达到99.99%。

DNA亲子鉴定测试的常见问题。DNA(脱氧核糖核酸)是人身体内细胞的原子物质。 每个原子有46个染色体,另外,男性的精子细胞和妇人的卵子,各有23个染色体,当精子和卵子结合的时候。这46个原子染色体就制造一个生命,因此,每人从生父处继承一半的分子物质,而另一半则从生母处获得。

DNA亲子鉴定测试与传统的血液测试有很大的不同。 它可以在不同的样本上进行测试,包括血液,腮腔细胞,组织细胞样本和精液样本。 由于血液型号, 例如A型,B型,O型或RH型,在人口中比较普遍,用于分辨每一个人,便不如DNA亲子鉴定测试有效。除了真正双胞胎外,每人的DNA是独一无二的。由于它是这样独特,就好像指纹一样,用于亲子鉴定,DNA是最为有效的方法。人们的结果通常是比法庭上要求的还准确10到100倍。

§ 超速离心

DNA近代质粒DNA分离纯化以从大肠杆菌中分离为代表,鉴于大局杆菌(E.coli)在分子生物学研究中的重要地位,从E.coli中分离纯化质粒DNA〈Piasmid DNA〉成为近年来超离心技术中一个重要课题。而质粒DNA的快速分离纯化又对超离心设备(超速离心机、转头和附属设备)提出了更高要求。

E.coli是典型的原核细胞生物,由于原核细胞缺乏其核细胞所具有的那种由单位膜组成的可把多种功能组分分隔为专一化的和局部独立区域的内膜系统,因而没有其核细胞所包含的细胞器、内质网、高尔基体、线拉体、溶酶体等等。电镜显微照片显示E.coli有两个可以区别的内部区域一一细胞质和核质,在它们外面围着一层较薄的细胞质膜和很厚的细胞壁,在细胞壁外部附着一些一端游离的鞭毛。质粒DNA位于核区,以细丝状存在,这种细丝状物在多种情况下是极长的环状DNA的一些片断所折叠起来的聚密体。

针对E.coli的显微结构待点,在进行超离心分离纯化质粒DNA之前的预处理顺序是: E.coli→用溶菌酶去细胞壁→用表面活性剂如SDS、Trit X-100等EE细胞膜→用乙酸锅使DNA、RNA及蛋白质大部分沉淀(90%以上)。

沉淀物可以在加入TE缓冲液(10m-MTris-HCL lmMEDTA,pH8.0)后分子筛上住去蛋白,去RNA;也可以用超速离心法去蛋白居,去RNA,去级状DNA或DNA断片。

质粒DNA超速离心的分离方法

传统的分离方法:数年前,由于受设备条件限制,质粒DNA的分离一般用CsCl平衡等密度离心法,自形成梯度。以10~12ml单管容量为例,用甩平转头分离,36.000rpm×60小时,用角式转头分离45,OOOrpm×36小时,前者包括加减速在内共用去1.3亿转驱动部寿命,后者也要用去1亿转驱动部寿命,这对当时超速离心机总寿命为100~200亿转来看,无疑每次实验费用过高,加上CsCl用量多、价格贵等因素,使这类分离纯化工作成为非常昂贵的实验。

质粒DNA超速离心分离的最新进展

(1)超速垂直管转头的离心分离(钦合金或碳纤维制造的):从1975年垂直管转头向世后,近年来各主要离心机生产商开发的垂直管转头,单管容量0.2ml到4Oml,最高转速从50,000rpm到120,000rpm,RCFmax可达700,OOOXg,90年代开发的新机型和转头己能够使质粒DNA垂直管离心分离实验做起来得心应手。

(2)近垂直管转头离心分离:为了消除垂直管转头用于质粒DNA离心在壁部形成的RNA沉淀对已形成的DNA区带的污染,同时也为了改进一般斜角式转头(倾角25•——35•)由于沉降距离较长,因而分离时间也较长的缺点,近几年开发了多种近垂直管转头(即Near VerticalTube Rot时,简称NVT转头或Neo Angle Rotor,小假角转头,简称NT)。它们的离心管纵剖面中心轴线与离心机驱动轴线之间夹角在7.5•——10•之间,转速从65,000rpm到120,OOOrpm,RCFmax可达646,000×g单管容量从2ml至13.5ml。NVT(或NT)转头的开发主要是为质粒DNA分离而设计,当然它也适用于线粒体DNA、染色体DNA、RNA及血清脂蛋白的分离•纯化。

(3)不连续阶梯梯度分离:质校DNA分离纯化传统方法是采用金管CsCl自形成梯度平衡等密度离心法,离心开始时金管CsCl密度均一,样品均匀分布其中。

§ 基因组计划

DNA

人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本国和中国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗登月计划并称为三大科学计划。

2000年6月26日,参加人类基因组工程项目的美国、英国、法兰西共和国、德意志联邦共和国、日本国和中国的 6国科学家共同宣布,人类基因组草图的绘制工作已经完成。最终完成图要求测序所用的克隆能忠实地代表常染色体的基因组结构,序列错误率低于万分之一。 95%常染色质区域被测序,每个Gap小于150kb。完成图将于2003年完成,比预计提前2年。

美国和英国科学家2006年5月18日在英国《自然》杂志网络版上发表了人类最后一个染色体——1号染色体的基因测序。

在人体全部22对常染色体中,1号染色体包含基因数量最多,达3141个,是平均水平的两倍,共有超过2.23亿个碱基对,破译难度也最大。一个由150名英国和美国科学家组成的团队历时10年,才完成了1号染色体的测序工作。

科学家不止一次宣布人类基因组计划完工,但推出的均不是全本,这一次杀青的“生命之书”更为精确,覆盖了人类基因组的99.99%。解读人体基因密码的“生命之书”宣告完成,历时16年的人类基因组计划书写完了最后一个章节。

§ 垃圾DNA

垃圾dna并不垃圾!酵母和蠕虫之类的简单生物是如何进化为鸟和哺乳动物这样的复杂生物的呢?一项针对基因组进行的广泛比较研究显示,问题的答案可能就隐藏在生物的垃圾脱氧核糖核酸(DNA)中。美国科学家发现,生物越复杂,其携带的垃圾DNA就越多,而恰恰是这些没有编码的“无用”DNA帮助高等生物进化出了复杂的机体。

自从第一个真核生物——包括从酵母到人类的有细胞核的生物——的基因组被破译以来,科学家一直想知道,为什么生物的大多数DNA并没有形成有用的基因。从突变保护到染色体的结构支撑,对于这种所谓的垃圾DNA的可能解释有许多种。但是去年从人类、小鼠和大鼠身上得到的完全一致的关于垃圾DNA的研究结果却表明,在这一区域中可能包含有重要的调节机制,从而能够控制基础的生物化学反应和发育进程,这将帮助生物进化出更为复杂的机体。与简单的真核生物相比,复杂生物有更多的基因不会发生突变的事实无疑极大地强化了这一发现。

为了对这一问题有更深的了解,由美国加利福尼亚大学圣塔克鲁斯分校(UCSC)的计算生物学家David Haussler领导的一个研究小组,对5种脊椎动物——人、小鼠、大鼠、鸡和河豚——的垃圾DNA序列与4种昆虫、两种蠕虫和7种酵母的垃圾DNA序列进行了比较。研究人员从对比结果中得到了一个惊人的模式:生物越复杂,垃圾DNA似乎就越重要。

这其中暗含的可能性在于,如果不同种类的生物具有相同的DNA,那么这些DNA必定是用来解决一些关键性的问题的。酵母与脊椎动物共享了一定数量的DNA,毕竟它们都需要制造蛋白质,但是只有15%的共有DNA与基因无关。研究小组在7月14日的《基因组研究》杂志网络版上报告说,他们将酵母与更为复杂的蠕虫进行了比较,后者是一种多细胞生物,发现有40%的共有DNA没有被编码。随后,研究人员又将脊椎动物与昆虫进行了对比,这些生物比蠕虫更为复杂,结果发现,有超过66%的共有DNA包含有没有编码的DNA。

参与该项研究工作的UCSC计算生物学家Adam Siepel指出,有关蠕虫的研究结果需要慎重对待,这是由于科学家仅仅对其中的两个基因组进行了分析。尽管如此,Siepel还是认为,这一发现有力地支持了这样一种理论,即脊椎动物和昆虫的生物复杂性的增加主要是由于基因调节的精细模式。

§ 基因治疗

基因治疗是用正常的基因整合入细胞,以校正和置换致病基因的一种治疗方法。从广义上来讲,将某种遗传物质转移到患者细胞内,使其体内发挥作用,以达到治疗疾病目的方法,也谓之基因治疗。

基因治疗所采用的方法基本上可分为以下几种:

1.DNA矫正。DNA矫正指将致病DNA链的异常碱基进行纠正,而正常部分予以保留。

2.DNA置换。DNA置换就是用正常DNA通过体内DNA同源重组,原位替换病变细胞内的致病DNA,使细胞内的DNA完全恢复正常状态。

3.DNA增补。DNA增补指将目的DNA导入病变细胞或其他细胞,不去除异常DNA,而是通过目的DNA的非定点整合,使其表达产物补偿缺陷DNA的功能或使原有的功能得到加强。DNA治疗多采用此种方式。这种方法增补的是显性DNA多用于治疗隐性病。

4.DNA失活。早期一般是指反义核酸技术。它是将特定的反义核酸,包括反义 RNA,反义DNA和核酶导入细胞,在翻译和转录水平阻断某些基因的异常表达。近年来又有反基因策略、肽核酸、DNA去除和RNA干扰技术。

DNA是所有生物的遗传物质基础

DNA(脱氧核糖核酸)是核酸的一类,因分子中含有脱氧核糖而得名。 DNA分子极为庞大(分子量一般至少在百万以上),主要组成成分是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胞嘧啶脱氧核苷酸和胸腺嘧啶脱氧核苷酸。DNA存在于细胞核、线粒体、叶绿体中,也可以以游离状态存在于某些细胞的细胞质中。大多数已知噬菌体、部分动物病毒和少数植物病毒中也含有DNA。 除了RNA(核糖核酸)和噬菌体外,DNA是所有生物的遗传物质基础。生物体亲子之间的相似性和继承性即所谓遗传信息,都贮存在DNA分子中。1953年,詹姆斯·沃森和弗朗西斯·克里克描述了DNA的结构:由一对多核苷酸链相互盘绕组成双螺旋。他们因此与伦敦国家工学院的物理学家弗雷德里克·威尔金斯共享了1962年的诺贝尔生理学或医学奖。

肥胖基因

英国伦敦皇家医院的科学家们发现,在肥胖者的体内,都存在着一种功能独特的基因,这种基因同人体内的3号染色体有关。由于该基因只存在于肥胖者的体内,因此,科学家称之为“肥胖基因”。经研究发现,肥胖基因能促进身体制造出一种在血液中输送脂肪的蛋白质—“APO—D”基因。该基因越多,血液输送脂肪就越流畅,体内积聚的脂肪也就越多,人就越肥胖。科学家们做过下面一个有趣的实验:让一对携带有肥胖基因的老鼠进行交配,结果后代个个滚瓜圆溜,形同肉球;而让一对没有肥胖基因的老鼠进行交配,产下的小鼠体内脂肪就少,个个都很消瘦。科学家们依照这种遗传模式,还可随意培育出体内含脂肪20~50%的肥瘦程度不同的小鼠。进一步发现,人的肥胖基因遗传情况与鼠类略有不同,属于隔代遗传。即,人们所能观察到的,在相当多的家庭里,胖祖母一般不会将肥胖基因传给自己的子女,而是传给她的孙辈们。科学家们还发现,与肥胖有关的基因不止一种。例如美国纽约洛克菲勒大学的一个研究小组最近宣布,他们经过8年的漫长研究,发现了一种能控制食欲和能量代谢的基因。据称,这种基因能向大脑发送一种停止进食的信号,使大脑的主人适时减弱食欲,以避免体内能量过剩;如果该基因发生变异,主人就会食欲大增,贪嘴多吃,最终成为一个大胖子。进一步研究揭示,这种基因由4500个碱基组成,其中一部分能产生由167个氨基酸组成的蛋白质。若此蛋白质合成正常,就能向大脑发出停止进食的信号;假如编码该蛋白质的氨基酸组成中编码第105位氨基酸残基的碱基出现异常,停止进食的信号就会失灵,从而导致肥胖。

§ 心灵感应

DNA

双螺旋结构DNA分子能够识别与自己“配对”的分子,即使相隔一段距离,并且在表面无其它外力帮助的情况下,相配对的两个分子最终能聚合在一起。科学家指出,这种“心理感应”会帮助DNA分子在它们混乱前排列整齐,这能够有效避免DNA结合时发生差错,也就有效避免了癌症,老化和其它的疾病的发生。但是同样的DNA适当地打乱组合顺序其实是对有性繁殖有意义的,因为要保证后代遗传得多样性。

DNA艺术由于DNA的独特性,每人都拥有不同的DNA,科学家们发现DNA的图谱非常独特、迷人。经过科学家与艺术家们的共同探讨,发明出一种基于DNA图谱的艺术品,2005年,在加拿大第一次面世就在艺术界和科学界引起强大的冲击!2007年,DNA艺术在中国国家重点实验室和DNAxx.com的合力开发下,DNA艺术品成功登陆中国!

§ DNA的简易提取法

一:人体DNA的简易提取法

所需的材料:①一茶匙盐,放进一杯水(自来水即可,绝对不能有杂质)里完全溶解、②一个干净的小玻璃杯、③一些洗涤液(去超市买正规的)、④一根滴管(可在化学品试剂店买)、⑤酒精度在50°以上的冰镇烈性酒(桶酿燕麦威士忌、质量上乘的杜松子酒、高度伏特加酒,或者抗菌酒精都能实现这项工作)

制取方法:在干净的小玻璃杯里放入一茶匙洗涤液并用三茶匙水(自来水即可,绝对不能有杂质)稀释。用盐水在嘴里用力漱洗30秒钟左右,然后吐进稀释的洗涤液之中。用力搅拌混合物几分钟,然后非常小心地把两茶匙冰镇烈酒顺着玻璃杯的侧壁倒进去。如果你的手不能拿稳,可以使用滴管,把杯子稍微倾斜一下会对此有所帮助。这个步骤要求注意力非常集中,而且是非常关键的一步,必须要形成一个泾渭分明的水和酒之间的界限。如果你做到了细心谨慎,就将在盐和漱口水混合液的顶部形成单独的一层;等几分钟之后,你就会看到在酒之中开始形成纺锤形、白色、线状的团块样物质。这就是你的DNA。接下来如果有条件的话,可用1280倍的显微镜观察……

注意事项:在开始之前,一定要保证你的口腔是干净的。如果刚吃完东西,要等4个多小时后才能提取,以确保提取的精度。

二:动物DNA的简易提取法

所需的材料:①鸡血细胞液5~10毫升(后面有鸡血细胞液的制作方法)、②铁架台、③铁环、④镊子、⑤三角架、⑥酒精灯、⑦石棉网、⑧载玻片(可在化学品试剂店买)、⑨玻璃棒、⑩滤纸、⑾滴管(化学品试剂店买)、⑿量筒(100ml一个)、⒀烧杯(100ml一个,50ml和500ml各2个)、⒁试管(20ml2个)、⒂漏斗(建议买3个)、⒃试管夹(建议买4个)、⒄纱布(建议买4个)、⒅体积分数为95%的酒精溶液(就是浓度为95%的酒精,实验前置于冰箱内冷却24小时,建议冷藏室的温度调节在4°~6°之间最好)、⒆蒸馏水(不少于500毫升)、⒇质量浓度为0.1%克/ml(毫升)的柠檬酸钠溶液、(21)物质的量浓度为2mol(摩尔)/L(升)和0.015mol/L的氯化钠溶液、(22)二苯胺试剂(本试剂是成瓶的)。

制取方法:①制备鸡血细胞→取刚杀过的鸡血(要干净,不能有杂质)50毫升左右,加入柠檬酸钠防止凝血;除去上面的清液,因为DNA主要存在于细胞核中。②提取核物质→加蒸馏水(一般是鸡血细胞的2倍半)并用玻璃棒搅拌不少于5分钟,使血细胞破裂,释放出的DNA往往和蛋白质结合在一起。③溶解核内DNA→DNA在高浓度的氯化钠溶液中溶解度很高,用2mol/L的氯化钠溶液可以加速核蛋白解聚,游离出DNA。④析出含DNA的粘稠物→加蒸馏水降低氯化钠溶液的浓度至0.14mol/L,此时DNA的溶解度下降,蛋白质的溶解度增高,从而使DNA和蛋白质分离,析出DNA(注意:此步骤要精确浓度)。⑤滤出含DNA的粘稠物→用纱布过滤得到丝状DNA的粘稠物。⑥DNA粘稠物再溶解→加入2mol/L的氯化钠溶液后,充分搅拌,使DNA溶解。⑦过滤含DNA的氯化钠溶液→用新纱布过滤。⑧提取较纯净的DNA→加入冷却的浓度为95%的酒精,使DNA沉淀、浓缩、形成含杂质较少的白色丝状物。⑨DNA的鉴定→DNA的鉴定可用二苯胺法,DNA遇到二苯胺变为蓝色;还可以用“甲基绿”法,“甲基绿”使DNA变为蓝绿色。

注意事项:①盛放鸡血细胞的容器,最好是塑料容器。鸡血细胞破碎后,DNA容易被玻璃容器吸附。因此,实验中最好使用塑料的烧杯和试管,可以减少提取过程中DNA的损失。②实验中搅拌含有悬浮物的溶液时,玻璃棒不要直插烧杯底部,同时搅拌要轻慢。③用“甲基绿”法鉴别DNA时,可将“甲基绿”直接滴到玻璃棒的丝状物上后,要用水充分冲洗掉浮色后再观察。

三:植物DNA的简易提取法

所需的材料:①新鲜菜花(或蒜黄、菠菜)。②塑料烧杯一个。③量筒(规格和数量同上)。④玻璃棒一个。⑤尼龙纱布(数量同上)。⑥陶瓷研钵一个(最好用陶瓷的)。⑦试管(数量同上,没标明数量的要同时准备两个,以备用)。⑧试管架(数量同上)⑨试管夹(数量同上)。⑩漏斗(数量同上)。⑾酒精灯一个。⑿石棉网(数量同上)。⒀三角架。⒁火柴一把(小火柴)。⒂刀片一把(小刀即可)。⒃天平。⒄研磨液(可在化学品试剂店买)。⒅体积为95%的酒精溶液(体积就是浓度)。⒆二苯胺试剂一瓶。⒇蒸馏水(不少于500毫升)。(21)塑料离心机一台(也可用食品加工机代替)。

制取方法:①准备材料→将新鲜菜花和浓度为95%的酒精溶液放入冰箱冷冻室内,至少24个小时,建议48个小时,冷冻室的温度要调成-18°以下。②取材→称取30克菜花,去梗取花,切碎。③研磨→将碎菜花放入研钵内,倒入10毫升研磨液,充分研磨10分钟,建议15分钟。④过滤→在漏斗中垫上尼龙纱布,将菜花研磨液滤入烧杯中(有条件的可将滤液滤入塑料离心机中离心,用1000转/分钟的速度旋转,离心5分钟,取出上面的清澈液体放入烧杯中。[也可用食品加工机代替,但速度一定要有保证!])在4°的冷藏室中放置5~6分钟后,再取上面的清澈液体。⑤加冷酒精→将一倍体积的清澈液体倒入两倍体积浓度为95%的冷酒精中,并用玻璃棒缓缓地轻轻地搅拌溶液(玻璃棒不要插入烧杯底部)。沉淀3~5分钟后,可见白色的DNA絮状物出现。用玻璃棒缓缓旋转,絮状物会缠在玻璃棒上。⑥配制二苯胺试剂→取0.1毫升B液,滴入到10毫升A液中,混匀。⑦鉴定→取4毫升DNA提取液放入试管中,加入4毫升二苯胺试剂,混匀后观察溶液颜色(不变蓝)。用沸水浴(100°)加热10分钟。在加热过程中,随时注意试管中溶液颜色的变化(逐渐出现浅蓝色)。

注意事项:①、一定的冷冻时间是绝对要掌握好的,因为植物的DNA提取不易。②、研磨的时间也要掌握好,理由同前。③、要想好一切步骤,一举呵成,就是要抓紧时间,理由同前。

随便看

 

百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/11 12:28:40