词条 | 康达效应 |
释义 | 康达效应(Coanda Effect)亦称附壁作用或柯恩达效应。 流体(水流或气流)有离开本来的流动方向,改为随着凸出的物体表面流动的倾向。当流体与它流过的物体表面之间存在表面摩擦时,流体的流速会减慢。只要物体表面的曲率不是太大,依据流体力学中的伯努利原理,流速的减缓会导致流体被吸附在物体表面上流动。这种作用是以罗马尼亚发明家亨利·康达为名。 发现比用引射产生升力更科幻的是所谓 Coanda 效应。亨利·康达发明的一架飞机(康达-1910)曾经因这种效应坠毁,之后他便致力这方面的研究。亨利·康达在著名工程师居斯塔夫·埃菲尔 (Gustav Effel)(就是设计埃菲尔铁塔和纽约自由女神结构的那个Effel)的支持下,开始研究流体力学,发现了所谓“边界层吸附效应”(boundary layer attachment,也称射流效应),通常也称 Coanda 效应(所以也有直译为康达效应的)。Coanda 效应指出,如果平顺地流动的流体经过具有一定弯度的凸表面的时候,有向凸表面吸附的趋向。开自来水的时候,如果手指碰到水柱,水会沿着手臂的下侧往下淌,而不是按重力方向从龙头直接往下流。 实验演示打开水龙头,放出小小的水流。把小汤匙的背放在流动的旁边。水流会被吸引,流到汤匙的背上。这是附壁作用及文土里效应(Venturi Effect)作用的结果。文土里效应令汤匙与水流之间的压力降低,把水流引向汤匙之上。当水流附在汤匙上以后,附壁作用令水流一直在汤匙上的凸出表面流动。 在空气动力学中的应用附壁作用是大部分飞机机翼的主要运作原理。附壁作用的突然消失是飞机失速的主要原因。部分飞机特别使用引擎吹出的气流来增加附壁作用,用以提高升力。美国波音的YC-14 及前苏联的安-72都是把喷射发动机装在机翼上方的前面,配合襟翼,吹出的气流可以提高低速时机翼的升力。波音的C-17运输机亦有透过附壁作用增加升力,但所产生的升力较少。 直升机的「无尾螺旋」(NOTAR) 技术,亦是透过吹出空气在机尾引起附壁作用,造成推力平衡旋翼的作用力。 利用 Coanda 效应,可以有意识地诱导空气气流,在机翼上表面产生比飞机和空气相对速度更大的气流速度,提高升力。70 年代时,美国空军已经意识到 C-130 在速度、航程和载重上的局限,希望用喷气式中型战术运输机取代,这就是“先进中型短距起落运输机”(Advanced Medium STOL Transport)计划的由来。经过60年代的无功而返,美国空军已经不再强调垂直起落,所以AMST只要求短距起落。波音和麦道的AMST方案分别入选,参加对比试飞。波音的方案YC-14利用Coanda效应,发动机置于机翼前缘上方,喷流直接吹拂由于襟翼放下而弯度大增的机翼上表面,不光直接产生Coanda效应,还诱导周边的气流,一同产生增升效果。YC-14的试飞是成功的,但这时国防部采购政策正在助理国防部长David Packard 手里大刀阔斧地改革,AMST计划最终被取消了。波音YC-14的“上表面吹气增升”(Upper Surface Blowing,简称USB,不是计算机上的那个USB)最终墙里开花墙外香,被安东诺夫用到安-72 上,后者成为第一架采用USB的量产型飞机。 飞碟设计中的应用不过 Coanda 效应不是只能用于短距起落飞机的。用好了,Coanda 效应可以实现垂直起落,这其中的佼佼者就是加拿大 Avro 的 Avrocar。关于飞碟的传说很多,最后大多被证明只是人们的想象,但 Avrocar 确实很像飞碟,这大概是最接近传奇式的飞碟的飞行器了。Avrocar 就像一个上面圆浑的大碟子,中间是进气的圆孔,周边是一圈小喷嘴。发动机产生高压排气,通过周边的喷嘴喷出,拉动上方气流,沿上表面高速从中心向周边流动,在飞行器静止的时候就可以形成升力,达到垂直起飞。垂直起飞后,重新调整周边喷嘴的气流分布,就可以实现喷气推进,一旦达到一定速度,飞碟本身的形状就可以产生气动升力,这时转入正常飞行。Avrocar 是美国陆军 VZ 系列垂直起落研究机中的一个,在试飞中演示了垂直起落能力,但无法飞出地效高度,一进入无地效飞行,飞行控制就显得力不从心,飞行稳定性没法解决,最后下马了,留下一段飞碟的佳话。 机翼设计中的应用观察机翼设计,不论是翼型、上下对称、平板式、或是倒翼型,它们的「翼弦线」(Chord)大多不是水平的,机翼前沿稍为向上而后沿向下,与水平做成一夹角。这个夹角称为「冲角」(或称「攻角」,Angle of Attack),就算翼弦线是水平的,机翼的「襟翼」(Flap)角度的改变也会形成「冲角」。 机翼的作用就是改变气流的方向,从而产生升力。把机翼设计成翼型,以及做成一个冲角,都是旨在改变气流的方向。本来水平运动的气流,因为黏度而依附接触的表面,流经翼型和(或)向后倾斜的机翼后,流动的方向变成偏向下方。换言之,机翼作用于空气,就好像把空气「扔」向下;因而使空气对机翼产生反作用力,把机翼推向上,产生升力(Weltner, 1990a;Waltham, 1998;Eastlake, 2002;Beginner's Guide to Aeronautics)。 另外,冲角越大,气流偏下的情况越剧烈,所产生的升力也越大。不过当冲角太大时,因大量湍流的形成使气流不能再依附机翼表面流动,升力大幅下降,而阻力却大幅上升,这就会发生「失速」(Stall)的情况。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。