请输入您要查询的百科知识:

 

词条 金属氢
释义

液态或固态氢在上百万大气压的高压下变成的导电体、由于导电是金属的特性,故称金属氢。 从理论上来看,在超高压下得到金属氢是确实可能的。不过,要得到金属氢样品,还有待科学家们进一步研究。 尽管目前还末把金属氢拿到手,但理论工作者推断,金属氢是一种高温超导体,是高密度、高储能材料。

金属特征

当我们看到一种金属的时候,大家都知道它是金属,因为金属有一些不平常的性质。当金属表面光滑时,它们反射光的效率很高,因此它们具有一种“金属光泽”;但非金属却没有很高的反射能力,因而具有一种“无光泽的颜色”。金属容易变形,能够制成金属板和拉成金属线;而非金属在受到打击时会被打碎,破裂或成为粉末。金属易于导热和导电,非金属却不能。

为什么有这样的差别

在多大数普通化合物中,例如在我们周围,看得见的海洋里和土壤里的那些化合物分子是由原子所构成的,这些原子由于共同享有电子而紧密地保持在一起。这里的每一电子都紧紧地被束缚在某一个原子或另一个原子上。当出现这种情况时,物质就表现出非金属性质。

根据这种准则,氢是一种非金属。普通的氢分子是由两个氢原子构成的。每个氢原子只有一个电子,构成一个分子的两个氢原子平均共享那两个电子。没有剩下的电子。

当一些电子不是牢固地受到束缚时会发生什么情况呢?例如,我们看一看元素钾吧。每个钾原子都有19个电子,它们排列在4个壳层中,只有最外面壳层中的电子可供共享。在钾原子的情况下,这就意味着它仅仅有一个电子可以为相邻原子所共享。再则,这个最外面的电子被控制得特别松,因为在它和吸引它的中心原子核之间有另一些电子壳层,这些中间壳层把最外面的电子同中心引力隔开了。

在固体钾中,原子紧密地结合在一起,就象我们有时在水果店里看到的苹果堆成角锥形那样。每个钾原子有8个相邻原子。由于最外面的电子被控制得很松,而且许多相邻原子又如此靠近,因而任何一个最外面的电子都易于从一个相邻原子滑到另一个相邻原子。

可是,正是这些松而活动的电子,使得钾原子有可能这样紧密地结合在一起;使钾有可能易于导热和导电;也就使钾有可能变形。总之,这些松而活动的电子使钾(和其他元素以及含有这些元素的混合物)具有金属性。

现在记住,氢像钾一样,仅仅有一个电子可以为相邻原子所共享。然而,还有一个不同之处。在氢的一个(仅仅是一个)电子和中心原子核之间没有起隔离作用的电子。因此,这个电子被控制得太紧了一些,以致不能进行足够的运动来把氢转变为金属,或者迫使氢原子紧密地结合在一起。

氢获外力后

但是,如果氢获得了外力,那会出现什么情况呢?如果氢不是由于本身电子的情况而是外界的压力迫使它们紧密地结合在一起,那又会怎么样呢?假定有足够的压力把氢原子非常紧密地挤在一起,以致各个原子都被8个、10个甚至12个近邻原子所包围。于是,每个氢原子的单个电子,不管原子核有异常强的吸引力,就可能开始从一个相邻原子滑到另一个相邻原子。这样你就会得到“金属氢”。

为了迫使氢这样紧密地结合在一起,氢原子必须处在一种近于纯粹的状态中(其他种原子的存在会产生干扰),并且不是在太高的温度下(高温会使它扩张)。氢原子还必须处在巨大的压力下。在太阳系中最接近于满足这些条件的地方是在木星的中心,因此有些人认为,木星的内部也许是由金属氢所构成的。

用途

1936年美国科学家维那对氢转变为金属的压力作了首次计算,提出了氢转变为金属的临界压力是在100万到1000万大气压的范围以内。目前在世界各国正通过多种途径来产生超高压制取金属氢。比较成熟的有两种方法,一种叫动态压缩法,即是从强磁场中采用快速冲击压缩,获取高压来制取金属氢。另一种叫静态压缩法,即采用1000t重以上的压力机或用将近10层楼高的水压机来产生100~200万大气压的高压,压缩液氢来制造金属氢。

先进性

为什么人们如此费尽心血地来研制金属氢呢?这是因为一旦金属氢问世,就如同当年蒸汽机的诞生一样,将会引起整个科学技术领域一场划时代的革命。

金属氢是一种亚稳态物质,可以用它来做成约束等离子体的“磁笼”,把炽热的电离气体“盛装”起来,这样,受控核聚变反应使原子核能转变成了电能,而这种电能将是廉价的又是干净的,在地球上就会方便地建造起一座座“模仿太阳的工厂”,人类将最终解决能源问题。

金属氢又是一种室温超导体,它将甩掉背在超导技术“身上”的低温“包袱”。超导材料是没有电阻的优良导体,但现在已研制成功的超导材料的超导转变温度多在零下250℃左右,这样的低温工作条件,严重地限制了超导体的应用。金属氢是理想的室温超导体,因此,可以大显身手。

用金属氢输电,可以取消大型的变电站而输电效率在99%以上,可使全世界的发电量增加四分之一以上。如果用金属氢制造发电机,其重量不到普通发电机重量的10%,而输出功率可以提高几十倍乃至上百倍。

金属氢还具有重大的军用价值。现在的火箭是用液氢作燃料,因此必须把火箭做成一个很大的热水瓶似的容器,以便确保低温。如果使用了金属氢,火箭就可以制造得灵巧,小型。金属氢应用于航空技术,就可以极大地增大时速,甚至可以超过音速许多倍。由于相同质量的金属氢的体积只是液态氢的1/7,因此,由它组成的燃料电池,可以较容易地应用于汽车,那时,城市就不再像现在这样喧哗、污染而变得十分清洁、安静。

金属氢内储藏着巨大的能量,比普通TNT炸药大30─40倍。因此,金属氢聚变时释放的能量要比铀核裂变大好多倍。伴随着金属氢的诞生必将会产生比氢弹威力大好多倍的新式武器。

制造历史

从20世纪40年代开始,中、朝等国就投入了大量的人力、物力研制金属氢。目前,世界上的高压实验室已达100多个。我国已研制成功了能产生100万大气压的压力机。我国研制成功了“分离球体式多级多活塞组合装置”能产生200万个大气压。近年来,中国等几个国家宣布已在实验室内研制成功了金属氢,这是人类向金属氢迈出了可喜的一步。而要使金属氢大规模投入工业生产,还有相当大的困难。但它已有力地推动和促进了超高压技术、超低温技术、超导技术、空间技术、激光、原子能等20多门科学技术向着新的深度发展。可以预言,大规模制造金属氢的时代已为期不远了。

发现史

早在1935年,英国物理学家就预言,在一定的高压下,任何绝缘体都能变成导电的金属,只是,不同的材料转变成导电金属所需的压力不同而已,有的材料,如磷,已能获得导电体,但稳定的金属氢样品始终没有得到。在苏联、日本、美国的几个实验室中,只在上百万大气压的超高压下得到了金属氢,不过,一旦恢复常压,氢又回复到初始状态。判断得到了金属氢,依据是当处于高压下时,它的电阻从10^8欧姆变为10^2欧姆(苏联人的数据),或从(1.26×10^12)欧姆降到10^2欧姆(日本人的数据)。

可行性

从理论上来看,在超高压下得到金属氢是确实可能的。不过,要得到金属氢样品,还有待科学家们进一步研究。 尽管目前还末把金属氢拿到手,但理论工作者推断,金属氢是一种高温超导体,是高密度、高储能材料。

已掌握的超导材料大多需在液氦(-269℃)冷却下使用,这使超导技术的发展受到限制。金属氢的超导临界温度(即体现超导性质主最高温度)是-223--73℃,能够在液氮(-196℃)温度下使用这将大大推动超导技术的发展。

由于金属氢是高密度材料,用它作燃料,火箭的体积和重量都会大大减小,航天事业将因此而产生巨大的飞跃。

和化学家不同,天文学家将氢和氦以外的一切元素统称为金属。在高温和高压条件下,气态的氢也可以成为电导体的金属氢。以木星为例:最外层是1000公里厚的气态分子氢,再往下是24000公里厚的液态分子氢,再往下是45000公里厚的液态金属氢。

金属氢

氢是人们最熟悉的化学元素。它在常温下是一种气体,在低温下可以成为液体,在温度降到零下259℃时即为固体。如果对固态氢施加几百万个大气压的高压,就可能成为金属氢。金属氢的出现是当代超高压技术创造的一项奇迹,它是目前高压物理研究领域中一项十分活跃的课题。

氢在金属状态下,氢分子将分裂成单个氢原子,并使电子能够自由运动。在金属氢中,氢分子键断裂,分子内受束缚的电子被挤压成公有电子,这种电子的自由运动,使金属氢具有了导电的特性。因此,把氢制成金属,关键就是把电子从原子的束缚下解放出来。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 19:31:45