词条 | 归纳推理思想 |
释义 | 概念由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理 是推理的一种 例如:直角三角形内角和是180度;锐角三角形内角和是180度;钝角三角形内角和是180度;直角三角形,锐角三角形和钝角三角形是全部的三角形;所以,一切三角形内角和都是180度。 这个例子从直角三角形,锐角三角形和钝角三角形内角和分别都是180度这些个别性知识,推出了"一切三角形内角和都是180度"这样的一般性结论,就属于归纳推理。 传统上,根据前提所考察对象范围的不同,把归纳推理分为完全归纳推理和不完全归纳推理。完全归纳推理考察了某类事物的全部对象,不完全归纳推理则仅仅考察了某类事物的部分对象。并进一步根据前提是否揭示对象与其属性间的因果联系,把不完全归纳推理分为简单枚举归纳推理和科学归纳推理。 现代归纳逻辑则主要研究概率推理和统计推理。 归纳推理的前提是其结论的必要条件。 首先,归纳推理的前提必须是真实的,否则,归纳就失去了意义。 其次,归纳推理的前提是真实的,但结论却未必真实,而可能为假。如根据某天有一只兔子撞到树上死了,推出每天都会有兔子撞到树上死掉,这一结论很可能为假,除非一些很特殊的情况发生,比如地理环境中发生了什么异常使得兔子必以撞树为快。 我们可以用归纳强度来说明归纳推理中前提对结论的支持度。支持度小于50%的,则称该推理是归纳弱的;支持度小于100%但大于50%的,称该推理是归纳强的;归纳推理中只有完全归纳推理前提对结论的支持度达到100%,支持度达到100%的是必然性支持。 归纳推理的数理逻辑通用演算形式为:s1⊆p+s2⊆p+s3⊆p+〈n〉(s⊆p)=∀×(s⊆p)。 分类它是由特殊的前提推出普遍性结论的推理。 归纳推理有以下几种类型: 2.1完全归纳法 2.2不完全归纳法 2.2.1简单枚举法 2.2.2科学归纳法 2.2.2.1挈合法(求同法) 2.2.2.2差异法(求异法) 2.2.2.3共变法 2.2.2.4剩余法 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。