词条 | 粉碎机械 |
释义 | 粉碎机械是破碎机械和粉磨机械的总称。两者通常安排料粒度的大小作大致的区分:排料中粒度大于3毫米的含量占总排料量50%以上者称为破碎机械;小于3毫米的含量占总排料量50%以上者则称为粉磨机械。有时也将粉磨机械称为粉碎机械,这是粉碎机械的狭义含意。利用粉碎机械进行粉碎作业的显著特征是:能量消耗大,耐磨材料和研磨介质的用量多,粉尘严重,噪声大。 粉碎机械的定义粉碎机械(Comminution Machine)是应用机械力对固体物料进行粉碎作业,使之变为小块、细粉或粉末的机械。粉碎机械是破碎机械和粉磨机械的总称。两者通常安排料粒度的大小作大致的区分:排料中粒度大于3毫米的含量占总排料量50%以上者称为破碎机械;小于3毫米的含量占总排料量50%以上者则称为粉磨机械。有时也将粉磨机械称为粉碎机械,这是粉碎机械的狭义含意。 利用粉碎机械进行粉碎作业的特点是能量消耗大、耐磨材料和研磨介质的用量多,粉尘严重和噪声大等。 应用粉碎机械可以减小物料的粒度至一定大小;增加物料的表面积,以提高其物理作用的效果或化学反应的速度;使物料中的不同组分在粉碎后单体分离,以便进一步将其彼此分开等。 例如,磨制面粉、粉碎饲料、磨细颜料和水泥的生熟料,研磨制备悬浮液的浆料,以及增加物料的流动性、填充性;磨碎有待人工干燥的物料,以加快其干燥速度,磨细触媒剂和吸附剂,以分别加强其触媒效能和吸附作用,将煤块磨成煤粉,以提高其燃烧速度和燃烧的完全程度等;将铁矿石粉碎后,通过磁选或浮选来获得精铁矿粉,将铅锌矿石粉碎后分选出铅矿粉和锌矿粉等。粉碎机械的分类: (1)气流磨 利用蒸汽、空气或其他气体以一定压力喷入机体内,产生高速旋转的涡流。机体内的物料颗粒随气流高速旋转,并在旋转过程中颗粒与颗粒之间发生碰撞、冲击和研磨,使物料粉碎磨细。 (2)球(棒)磨机 物料在一回转的并填装有研磨体的筒体内,筒体在回转过程中将研磨体和物料提升到一定高度后抛落下来,研磨体对物料有较大冲击与研磨,致使物料粉碎。 (3)碾磨机 碾磨机又称盘磨机,从结构上可分为圆盘固定型和圆盘转动型两大类。物料由加料口均匀加入,由于离心力的作用,物料在磨盘的边缘,在弹簧压力(或离心力)和磨本身产生的重力作用下,将物料挤压和研磨,使物料粉碎磨细。 (4)振动磨 在一个振动的筒体内装有磨介及物料,振动的筒体在一个近似椭圆的轨迹上进行快速振动。筒体的振动使磨介及物料呈悬浮状态,并产生小的抛射冲击作用,磨介与物料产生研磨作用,使物料粉碎磨细。 (5)无介质磨机 物料进入磨机后,由提升板把物料提升到一定的高度,然后自由下落,产生冲击作用,物料间的相互摩擦产生磨剥作用。同时物料因粒、块大小的不同,大块物料与楔形衬板撞击,由于楔形衬板的反击作用,防止物料产生轴向大小块的偏析,从而大块物料也能得到均匀分布。自排料端沿下面返回的粗料,也同新加进磨机的料块一样,均匀地落于筒体底部中心,然后向两边扩散。大块和细粒物料在筒体底部沿轴向运动的方向正好相反,于是产生粉磨作用,是物料粉碎磨细。无介质磨机又称自磨机。 粉碎机械的发展历史在中国,公元前两千多年就出现了最简单的粉碎工具——杵臼。杵臼进一步演变为公元前200~前100年的脚踏碓。这些工具运用了杠杆原理,初步具备了机械的雏形,不过,它们的粉碎动作仍是间歇的。 最早采用连续粉碎动作的粉碎机械是公元前四世纪由公输班发明的畜力磨,另一种采用连续粉碎动作的粉碎机械是辊碾,它的出现时期稍晚于磨。公元二百年之后,中国杜预等在脚踏碓和畜力磨的基础上研制出了以水力为原动力的连机水碓、连二水磨、水转连磨等,把生产效率提高到一个新的水平。这些机械除用于谷物加工外,还扩展到其他物料的粉碎作业上。 近代的粉碎机械是在蒸汽机和电动机等动力机械逐渐完善和推广之后相继创造出来的。1806年出现了用蒸汽机驱动的辊式破碎机;1858年,美国的布莱克发明了破碎岩石的颚式破碎机;1878年美国发展了具有连续破碎动作的旋回破碎机,其生产效率高于作间歇破碎动作的颚式破碎机;1895年,美国的威廉发明能耗较低的冲击式破碎机。 与此同时,粉磨机械也有了相应的发展,19世纪初期出现了用途广泛的球磨机;1870年在球磨机的基础上,发展出排料粒度均匀的棒磨机;1908年又创制出不用研磨介质的自磨机。二十世纪30~50年代,美国和德国相继研制出辊碗磨煤机、辊盘磨煤机等立轴式中速磨煤机。 这些粉碎机械的出现,大大提高了粉碎作业的功效。但是,由于各种物料的粉碎特性互有差异,不同行业对产品的粒度要求也彼此不同,于是又先后创制出按不同工作原理进行粉碎作业的多种粉碎机械,如轮碾机、振动磨、涡轮粉碎机、气流粉碎机、风扇磨煤机、砂磨机、胶体磨等。 到了70年代初期,已制造出每小时产量为5000吨、最大给料直径达2000毫米的大型旋回破碎机,和可将物料磨细到粒度小于0.01微米的胶体磨。 粉碎机械的工作方法用机械粉碎固体物料的主要方法有五种,即挤压、弯曲、劈裂、研磨和冲击。前四种都是使用静力,最后一种则应用动能。在绝大多数粉碎机械中,物料常在两种以上粉碎方法的作用下被粉碎,例如,在旋回破碎机中,主要应用挤压、劈裂和弯曲;在球磨机中,主要应用冲击和研磨。 粉碎方法是根据物料的物理特性、料块的大小和所要求的细化程度来选择的。对于坚硬物料,应采用挤压、弯曲和劈裂;对于脆性物料,应采用冲击和劈裂;料块较大时,应采用劈裂和弯曲;料块较小或排料粒度要求很小时,则应采用冲击和研磨。粉碎方法如果选择不当,就会出现粉碎困难或过度粉碎现象,两者都会增大粉碎过程中的能量消耗。 粉碎机械的分类方法有多种,或按结构形式或按粉碎方法,或按运动速度,或按受力种类,或按细化程度来划分。 粉碎比是指粉碎前后物料粒度的大小变化程度。对于单台粉碎机械来说,它等于给料的最大粒度与排料的最大粒度之比;对于由多台粉碎机械所组成的粉碎系统来说,它等于最初给料粒度与最终排料粒度之比,或等于各单台粉碎机械的粉碎比的连乘积。当使用破碎机械破碎物料时,粉碎比通常称为破碎比。 当粉碎比要求很大时,粉碎作业往往要在由若干台粉碎机械组成的粉碎系统中来完成。物料在这个系统中经过各台粉碎机械,其粒度逐步减小,最后达到所要求的粒度。在这种粉碎系统中,每个阶段都应选用适当的粉碎机械和粉碎比,在各个阶段之间保持相互配合的生产能力。同时,为减少过度粉碎以提高粉碎效能和降低能耗,还须在每道粉碎作业之后进行筛分或分级。 工、农业生产中的大量粉碎工作消耗的能量很大,但在粉碎作业中,输入粉碎机械中的能量的绝大部分都转化为热而由粉碎机械、循环空气和被粉碎的物料等所吸收,直接用于物料粉碎上的却为量极小:在破碎机械中,一般不超过10%;在粉磨机械中,则常不足1%。因此,为了减少能耗,就必须选取适当的粉碎机械、采用正确的操作方法、规定最佳的粉碎比和单位时间内的产量。 以一般水泥厂为例,破碎机械的耗电量约占总耗电量的10%,而其粉磨机械的耗电量则占60%左右。因此,在粉碎过程中就必须采取降低过度粉碎的措施,以达到节能的目的。 粉碎能耗与细化程度之间的关系粉碎理论主要是研究粉碎过程中能耗与细化程度之间的关系。由于粉碎作业是涉及多种因素的极其复杂的过程,因此在粉碎理论方面尚无公认的统一结论,而只有三种比较重要的假说,分别是: 德国的里特林格尔于1867年提出的面积假说,认为固体物料粉碎时,能耗与新产生的表面积成正比;德国的基克于1885年提出的体积假说,认为将几何形状相似的同类物料破碎成几何形状也相似的产品时,能耗与被破碎的料块的体积或重量成正比;美国的邦德和中国的王仁东于1952年提出的裂缝假说。 这三种假说在实用中都有其局限性,面积假说较适用于排料粒度为0.01~1毫米的粉磨作业,体积假说较适用于排料粒度大于10毫米的粗碎和中碎作业,而裂缝假说则介于两者之间,适用于从中碎到粗粉磨作业的比较广泛的范围内。 工作原理工业、农业生产中的大量粉碎工作消耗的能量很大,但在粉碎作业中,输入粉碎机械中的能量的绝大部分都转化为热而由粉碎机械、循环空气和被粉碎的物料等所吸收,直接用于物料粉碎上的却为量极小:在破碎机械中,一般不超过10%;在粉磨机械中,则常不足1%。因此,为了减少能耗,就必须选取适当的粉碎机械、采用正确的操作方法、规定最佳的粉碎比和单位时间内的产量。在正常的工作条件下,不同细化范 围的能耗水平大致如下粉碎到100毫米 3~4 千瓦小时/吨 粉碎成100~10毫米 5~6 千瓦小时/吨 粉碎成10~0.125毫米 20~30 千瓦小时/吨 粉碎到0.125毫米 100~1000 千瓦小时/吨 以一般水泥厂为例,破碎机械的耗电量约占全厂总耗电量的10%,而其粉磨机械的耗电量则占60%左右。因此,在粉碎过程中就必须采取降低过度粉碎的措施,以达到节能的目的。 粉碎理论主要是研究粉碎过程中能耗与细化程度之间的关系。由于粉碎作业是涉及多种因素的极其复杂的过程,在粉碎理论方面尚无公认的统一结论,而只有3种比较重要的假说。 计算公式① 德国的P.R.von里特林格尔于1867年提出的面积假说认为,固体物料粉碎时,能耗与新产生的表面积成正比。其关系式为式中A为能耗,D1和D2分别为给料和排料的粒度,Q为常数。 ② 德国的F.基克于1885年提出的体积假说认为,将几何形状相似的同类物料破碎成几何形状也相似的产品时,能耗与被破碎的料块的体积或重量成正比。其关系式为 式中A为能耗,D1和Dn分别为最初给料和最终排料的粒度,C为常数。 ③ 美国的F.C.邦德和中国的王仁东于1952年提出的裂缝假说认为,将粒度为D1的颗粒群粉碎成粒度为D2的颗粒群时,能耗成正比,即式中K为常数,邦德用10Wi代替它。Wi通常称为邦德功指数,它是物料的抗碎和抗磨的一个参数。裂缝假说还将D解释为使粒度D的料块破裂开时所产生的裂缝长度的一个量度。因此粉碎能耗也就与料块碎裂时新产生的裂缝长度成正比。 这3种假说在实用中都有其局限性,面积假说较适用于排料粒度为0.01~1毫米的粉磨作业,体积假说较适用于排料粒度大于10毫米的粗碎和中碎作业,而裂缝假说则介于两者之间,适用于从中碎到粗粉磨作业的比较广泛的范围内。 机械用途木屑粉碎机械 粉碎机械的用途很广。应用粉碎机械可以达到下列几个主要目的: ①减小物料的粒度至一定大小,例如磨制面粉,粉碎饲料,磨细颜料、染料和水泥的生、熟料,研磨制备悬浮液的浆料,以及增加物料的流动性、填充性和便于包装、储存、运输等; ②将物料粉碎后筛分为不同粒度级别的小块、细粒或粉末,例如为混凝土和筑路工程制备块石、碎石和人造砂,将原煤按用户需要粉碎为中块、小块和煤粉等; ③增加物料的表面积以提高其物理作用的效果或化学反应的速度,例如磨碎有待人工干燥的物料以加快其干燥速度,磨细触媒剂和吸附剂以分别加强其触媒效能和吸附作用,将煤块磨成煤粉以提高其燃烧速度和燃烧的完全程度等; ④使物料中的不同组分在粉碎后单体分离,以便进一步将其彼此分开,例如将铁矿石粉碎后通过磁选或浮选来获得精铁矿粉,将铅锌矿石粉碎后分选出铅矿粉和锌矿粉等。 粉碎方法是根据物料的物理特性、料块的大小和所要求的细化程度来选择的。对于坚硬物料,应采用挤压、弯曲和劈裂;对于脆性物料,应采用冲击和劈裂;料块较大时,应采用劈裂和弯曲;料块较小或排料粒度要求很小时,则应采用冲击和研磨。粉碎方法如果选择不当,就会出现粉碎困难或过度粉碎现象,两者都会增大粉碎过程中的能量消耗。 操作规程1.工作前必须全面检查各部操作机构是否正常,将摇臂导轨用细棉纱擦拭干净并按润滑油牌号注油。 2.摇臂和主轴箱各部锁紧后,方能进行操作。 3.摇臂回转范围内不得有障碍物。 4.开粉粹机械前,粉碎机械的工作台、工件、夹具、刃具,必须找正,紧固。 5.正确选用主轴转速、进刀量,不得超载使用。 6.超出工作台进行钻孔,工件必须平稳。 7.粉碎机械机床在运转及自动进刀时,不许变紧固换速度,若变速只能待主轴完全停止,才能进行。 8.装卸刃具及测量工件,必须在停机中进行,不许直接用手拿工件钻削、不得戴手套操作。 9.工作中发现有不正常的响声,必须立即停车检查排除故障。 工作原理粉碎机械粉碎固体物料的主要方法有五种,即挤压、弯曲、劈裂、研磨和冲击。前四种都是使用静力,最后一种则应用动能。在绝大多数粉碎机械中,物料常在两种以上粉碎方法的作用下被粉碎,例如,在旋回破碎机中,主要应用挤压、劈裂和弯曲;在球磨机中,主要应用冲击和研磨。 粉碎方法是根据物料的物理特性、料块的大小和所要求的细化程度来选择的。对于坚硬物料,应采用挤压、弯曲和劈裂;对于脆性物料,应采用冲击和劈裂;料块较大时,应采用劈裂和弯曲;料块较小或排料粒度要求很小时,则应采用冲击和研磨。粉碎方法如果选择不当,就会出现粉碎困难或过度粉碎现象,两者都会增大粉碎过程中的能量消耗。 粉碎比是指粉碎前后物料粒度的大小变化程度。对于单台粉碎机械来说,它等于给料的最大粒度与排料的最大粒度之比;对于由多台粉碎机械所组成的粉碎系统来说,它等于最初给料粒度与最终排料粒度之比,或等于各单台粉碎机械的粉碎比的连乘积。当使用破碎机械破碎物料时,粉碎比通常称为破碎比。 当粉碎比要求很大时,粉碎作业往往要在由若干台粉碎机械组成的粉碎系统中来完成。物料在这个系统中经过各台粉碎机械,其粒度逐步减小,最后达到所要求的粒度。在这种粉碎系统中,每个阶段都应选用适当的粉碎机械和粉碎比,在各个阶段之间保持相互配合的生产能力。同时,为减少过度粉碎以提高粉碎效能和降低能耗,还须在每道粉碎作业之后进行筛分或分级。 应用粉碎机械可以减小物料的粒度至一定大小;增加物料的表面积,以提高其物理作用的效果或化学反应的速度;使物料中的不同组分在粉碎后单体分离,以便进一步将其彼此分开等。 应用机械力对固体物料进行粉碎作业,使之变为小块、 细粒或粉末的机械。 粉碎机械是破碎机械和粉磨机械的总称。两者通常按排料粒度的大小作大致的区分:排料中粒度大于 3毫米的含量占总排料量50%以上者称为破碎机械;小于3毫米的含量占总排料量50%以上者则称为粉磨机械。有时也将粉磨机械称为粉碎机械,这是粉碎机械的狭义含意。利用粉碎机械进行粉碎作业的显著特征是:能量消耗大,耐磨材料和研磨介质的用量多,粉尘严重,噪声大。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。