请输入您要查询的百科知识:

 

词条 分子学
释义

DNA分子双螺旋结构的发现:20世纪50年代,世界上有三个小组正在进行DNA生物大分子的分析研究,他们分属于不同派别,竞争非常激烈。结构学派,主要以伦敦皇家学院的威尔金斯和富兰克林(R.Franklin)为代表;生物化学学派是以美国加州理工学院鲍林(L.G.Pauling)为代表;信息学派,则以剑桥大学的沃森和克里克为代表。

DNA分子学说

威尔金斯

结构学派的威尔金斯是新西兰物理学家,他的贡献在于选择了DNA作为研究生物大分子的理想材料,并在方法上采取“X射线衍射法”。他认为DNA分子的X射线衍射研究对于建立严格的分子模型是有帮助的。他和他的同事获得了世界上第一张DNA纤维X射线衍射图,证明了DNA分子是单链螺旋的,并在1951年意大利生物大分子学术会议上报告了他们的研究成果。正如前面所介绍的那样,沃森也参加了那次会议,并受到很大启发。

富兰克林

结构学派的另一位代表人物是富兰克林,她是一位具有卓越才能的英国女科学家。1952年,她在DNA分子晶体结构研究上成功地制备了DNA样品,更重要的是通过X射线衍射拍摄到一张举世闻名的B型DNA的X射线衍射照片,由此推算DNA分子呈螺旋状,并定量测定了DNA螺旋体的直径和螺距;同时,她已认识到DNA分子不是单链,而是双链同轴排列的。

鲍林

生物化学学派的代表鲍林是美国著名的化学家。致力于研究DNA、蛋白质等生物大分子在细胞代谢和遗传中如何相互影响及化学结构。1951年,根据结构化学的规律性,成功地建立了蛋白质的。α-螺旋模型。

信息学派的沃森和克里克主要研究信息如何在有机体世代间传递及该信息如何被翻译成特定的生物分子。他们无论是在科学实验的经验,还是学术成就方面都无法与威尔金斯、富兰克林、鲍林相比,然而他们后来居上,在18个月的时间内创造了DNA分子的双螺旋模型,跃上20世纪的科学宝座,摘取“分子生物学”的桂冠,领了半个世纪的风骚。究其根本原因是他们能采百家之长融为一体,化为己用。

沃森和克里克

建立DNA分子模型

自1951年开始,沃森和克里克先后建立了三个DNA分子模型。他们在建立模型时,不只是考虑其结构,还要始终联系DNA的功能和信息。他们要求建立的模型既要满足物理、化学、数学研究的最新事实,如X射线衍射结果、碱基配对的力学要求,还要满足生化知识,如酮型、氢键、键角等,更要使DNA能解释遗传学和代谢理论,这是一种很先进的思想。

第一个模型是一个三链的结构。这是在对实验数据理解错误的基础上建立的,最终失败。但他们并不气馁,继续搜集材料,查阅资料,富兰克林的B型DNA的X射线衍射照片,查尔加夫的DNA化学成分的分析都曾给沃森和克里克很大启示。他们建立的第二个模型是一个双链的螺旋体,糖和磷酸骨架在外,碱基成对的排列在内,碱基是以同配方式即A与A,C与C,G与G,T与T配对。由于配对方式的错误,这个模型同样宣告失败。尽管这次又失败了,但他们从中总结了不少有益的经验教训,为成功地建立第三个模型打下了基础。

提出DNA分子复制的假说

1953年2月20日,沃森灵光一现,放弃了碱基同配方案,采用碱基互补配对方案,终于获得了成功。沃森和克里克又经过三周的反复核对和完善,3月18日终于成功地建立了DNA分子双螺旋结构模型,并于4月25日在英国的《自然》杂志上发表。DNA分子规则的双螺旋结构模型与世人见面了,要点如下:DNA分子是由两条平行的脱氧核苷酸长链向右螺旋形成的;DNA分子中脱氧核糖和磷酸交替连结,排列在外侧,构成基本骨架,碱基排列在内侧;两条链上的碱基通过氢键连结起来,形成碱基对,即A与T,C与C配对;DNA分子中两条脱氧核苷酸长链中的原子排列方向相反,一条是5’→3’走向,另一条是3’→5’

数个星期之后,沃森和克里克又在《自然》杂志上进一步提出了DNA分子复制的假说——半保留复制机制,它为进一步揭示遗传信息的奥秘提供了广阔的前景。

成功启示

从沃森和克里克的成功,我们不难发现,现代科学的创举决非一两个人所能办到的,他们必须采百家之长,充分借鉴别人的成功经验和理论,勤于思考,勇于探索,在掌握先进的科学方法后,有高明正确的科学思想指导才能成功。从科学发展的角度上看,沃森和克里克把各自独立研究的信息学派、结构学派和生化学派对生物遗传的研究统一起来推向前进,建立了不可磨灭的丰功伟绩。是他们完成了历史的、科学的统一,创建了DNA分子的双螺旋结构,这是分子生物学史上划时代的创举,是突破性的进展,人们从此开始从分子角度来研究生命科学,奠定了分子生物学的基础。我国著名的生物学家谈家桢指出:“DNA分子双螺旋结构的发现,不仅是生物科学的重大突破,也是整个自然科学的辉煌成就,其意义足以同迄今已有的任何一次科学发现相媲美”。

锲而不舍再创佳绩

25岁的沃森因DNA分子的双螺旋结构模型而一举成名,但他并不满足,继续他的科学研究。1960年,32岁的他担任哈佛大学教授。他的代表作有《双螺旋结构》、《基因分子生物学》,后者被视为最重要、最优秀的教材之一。1968年,沃森临危受命担任冷泉港实验室主任,他把一个财政困窘,几乎关闭的实验室再度建成世界知名的科研基地,其中凝结了沃森的智慧和汗水。在那里,他培养了很多科学人才,为科学的发展注入了活力。

成绩表现

DNA双螺旋结构问世后,克里克表现得不如沃森洒脱,他还不得不为博士论文忙碌,直到1957年取得博士学位后,他又进入剑桥大学分子生物学实验室,再度组织、领导对分子生物学的研究,成绩不斐,主要表现在:

中心法则的提出

早在1953年DNA分子结构被发现之前,沃森就对DNA到蛋白质的遗传信息传递路线作出了预测:“DNA→RNA→蛋白质”,但缺少深入分析。1958年,克里克提出了遗传信息的中心法则,将DNA、RNA和蛋白质三种物质可能具有的信息流都画了上去。后来,在人们弄清了三种RNA即mRNA、rRNA、tRNA的存在及作用,知道DNA经过转录可以形成mRNA,mRNA穿过核孔进入细胞质,在以rRNA为主形成的核糖体上,以mRNA为模板,以tRNA为运载工具合成蛋白质后,克里克对中心法则又进行了修改。

1965年,科学家发现了RNA复制酶,说明RNA可以自我复制。1970年,坦明(H.M.Temin)和巴尔的摩(D.Baltimore)在一种RNA病毒侵染的宿主细胞中分离出一种反向转录酶,它能使RNA反常地转向DNA,从而整合到宿主的细胞上去。根据这些实际情况,克里克于1970年再次修改了中心法则,在这次修改中,他认为遗传信息从DNA到蛋白质的直接转移只是一种理论上的假设。

中心法则合理地说明了核酸和蛋白质两类大分子的联系和分工:核酸的功能在于贮存和转移遗传信息,指导和控制蛋白质的合成;蛋白质的主要功能是进行新陈代谢以及作为细胞结构的组成成分。

遗传密码表的建立

当DNA分子双螺旋结构公布于世后,人们认识到四种碱基的排列方式包含极大的信息量。如果是一个由100个脱氧核苷酸组成的DNA,那么它所包含的最大信息量将达到4100,这个数字比太阳系所有原子总数还要大1000倍,因此引起科学家极大兴趣,都想来破译遗传密码。人们经推理很明显地看出是4个碱基的排列决定蛋白质中20个氨基酸的排列,简化为数学排列组合只能是4→20,为满足20这个数,4的全排列只能是43=64,这可以为编码20种氨基酸提供足够的信息。三联体密码方案初步建立起来,即mRNA分子中相邻的三个碱基称为三联体,它能决定多肽中的一个氨基酸,所以又把mRNA的三联体称为密码子。

克里克认为不仅存在一个三联体密码字典,可能还有起始密码、终止密码和同义密码。在克里克及众多科学家不懈努力下,1966年遗传密码全部被破译出来:①所有遗传密码都是由三个连续的核苷酸组成;②许多氨基酸的密码子并非一个,而是由许多近似的核苷酸组成,即存在简并码;③3个碱基的64种组合中,有61种可以用于编码各种氨基酸,其中AUG、GUG还是翻译的起始信号,称为起始密码子;另外三种组合不能编码任何氨基酸,它们全部是编码的终止符号,这就是UAA、UAG、UGA,称为终止密码子。由此可以看出,克里克的推测多么准确,使我们看到了一个真正掌握科学脉搏的科学家,他的眼光有多么远大,他的思路有多么清晰呀!

1969年,在克里克及其他科学家的不断努力下,克服种种困难,终于将核酸中的碱基排列与蛋白质合成联系起来,形成了遗传密码表,使人们一目了然,能迅速地掌握氨基酸合成时碱基的三联体密码。人们常把它与门捷列夫的元素周期表相媲美,它是生物学发展史上的重要里程碑。

沃森和克里克创建的DNA分子双螺旋结构模型,在以后的科学研究中得到进一步的证实,极大地推动了分子生物学的发展。1962年,他们双双获得诺贝尔医学和生理学奖。

克隆

发展

自从1953年,沃森和克里克提出DNA分子双螺旋结构模型以来,基因的分子生物学迅速发展起来。

1967年,DNA连接酶首次被分离出来,这种酶能使DNA分子的末端之间形成3’,5’-磷酸二酯键,因此可以使2个DNA分子连接起来。1970年,科学家发现了第一种限制性内切酶,这种酶能识别特定的DNA顺序,并且在这个顺序内的一定位置上把DNA分子切断。1972年,美国斯坦福大学的伯格(P.Berg)等人设想,如果把猿病毒DNA和λ噬菌体DNA用同一种限制性内切酶切割后,再用DNA连接酶把这两种DNA分子连接起来,就会产生一种新的重组DNA分子,这是分子克隆的开创性工作。1973年,科恩(S.Cohen)等人将外源DNA片段与质粒DNA连接起来,构成一个重组质粒,并成功地将其转移到大肠杆菌中,从而首次建立了分子克隆体系。

成熟

克隆是clone的译音,是无性繁殖的意思。分子克隆又称重组DNA或基因工程,是指用人工方法取出某种生物的个别基因,把它转移到其它生物的细胞中去,并使后者表现出新的遗传性状,这是一种DNA的无性繁殖技术。这项技术从20世纪70年代开始,迅速发展起来,先后培育出一些具有商业价值的转基因产品。例如1988年,我国科学家合成了抗黄瓜花叶病毒基因,并把这一基因引入到烟草等作物的细胞中,得到抗病能力很强的新品种。1989年,中国科学院武汉水生生物研究所的朱作言等科学家将人的生长激素基因成功地导入泥鳅、鲤鱼、鲫鱼的卵细胞中,从而使这些鱼的生长速度明显加快。基因工程在改良生物品种,治疗人类的遗传病等方面潜力还很大,但仍有很多难题需突破。

另外,在遗传工程中还有一种细胞水平的遗传。1997年,首例体细胞克隆羊问世。据1997年2月27日英国《自然》杂志报道,英国苏格兰卢斯林研究所的科学家们首次成功利用细胞核移殖技术,经人工繁殖产生哺乳动物—多莉羊。其克隆过程大致是:从一个6龄母羊身上取乳腺细胞,经培养后取核,利用电打孔使该核进入另一只羊的去核卵细胞中,经培养后植入第三只羊(替代母羊)的子宫中生长,直至分娩。经基因图分析,多莉与供核者(6龄母羊)基因组成相同,也就是说,多莉几乎是第一只羊的翻版,这就是无性繁殖——克隆,即细胞水平的遗传工程。这项实验的成功使由人体细胞克隆产生克隆人成为可能,从而引起了道德、伦理与法律等问题的激烈争论。

总之,一次新的技术或新的理论的产生与成熟,必将会带来新的革命与挑战。随着道德、法律的不断完善,人们终将受益。

在分子生物学飞速发展的今天,人们还是不能忘记它的创始人沃森和克里克。他们将一生都献给了20世纪的分子生物学,由他们两个人所掀起的狂澜,席卷了全球,带动一系列学科的发展。人们尊称他们为“分子生物学的元勋”。

DNA发现史

20世纪50年代初

20世纪50年代初,英国科学家威尔金斯等用X射线衍射技术对DNA结构潜心研究了3年,意识到DNA是一种螺旋结构。女物理学家富兰克林在1951年底拍到了一张十分清晰的DNA的X射线衍射照片。

1952年

美国化学家鲍林发表了关于DNA三链模型的研究报告,这种模型被称为α螺旋。沃森与威尔金斯、富兰克林等讨论了鲍林的模型。威尔金斯出示了富兰克林在一年前拍下的DNA的X射线衍射照片,沃森看出了DNA的内部是一种螺旋形的结构,他立即产生了一种新概念:DNA不是三链结构而应该是双链结构。他们继续循着这个思路深入探讨,极力将有关这方面的研究成果集中起来。根据各方面对DNA研究的信息和自己的研究和分析,沃森和克里克得出一个共识:DNA是一种双链螺旋结构。这真是一个激动人心的发现!沃森和克里克立即行动,马上在实验室中联手开始搭建DNA双螺旋模型。从1953年2月22日起开始奋战,他们夜以继日,废寝忘食,终于在3月7日,将他们想像中的美丽无比的DNA模型搭建成功了。

沃森、克里克的这个模型正确地反映出DNA的分子结构。此后,遗传学的历史和生物学的历史都从细胞阶段进入了分子阶段。

由于沃森、克里克和威尔金斯在DNA分子研究方面的卓越贡献,他们分享1962年的诺贝尔生理学或医学奖。

分子学说(Molecular Hypothesis)

诞生

在19世纪上半叶,科学家们对分子的概念还缺乏准确的认知。原子论的提出者、英国化学家道尔顿把化合物的分子看作是复杂原子,英国物理学家和化学家法拉弟则把“分子”、“原子”当成同义语。

1808年,法国化学家盖-吕萨克(J.L.Gay-Lussac 1778-1850)根据化合反应实验的发现,提出假说:“在同温同压下,相同体积的不同气体含有相同数目的原子”。但道尔顿认为:不同元素的原子大小不一,相同体积、不同元素气体的原子数不可能相等。 1811年,意大利物理学家阿伏加德罗(Amedeo Avogadro,1776-1856)在盖-吕萨克气体反应实验的基础上,引进了分子概念,提出了分子假说:在同温同压下,所有同体积的气体,无论是元素、化合物还是混合物,都含有相同数目的分子。

分子假说

分子假说有两个核心概念:虽然相同体积气体的原子数不同,但分子数相同;物质由分子组成,分子由原子组成。 但分子假说当时并未获得化学界的承认。由于不承认分子的存在,化合物的原子组成就无法确定,以至原子量测定的数据呈现一片混乱。直到1860年国际化学会议上就原子量问题激烈争论之际,意大利化学家康尼查罗指出:只有接受阿伏加德罗50年前提出的分子假说,原子量、化学式的问题才能迎刃而解。化学家们终于承认分子假说了,但阿伏加德罗已在4年前逝世,未能亲眼看到自己学说的胜利。 分子学说奠定了原子-分子论的基础,是人类认识物质世界过程中的一次重大突破。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/15 15:41:57