请输入您要查询的百科知识:

 

词条 二进制运算法则
释义

莱布尼兹也是第一个认识到二进制记数法重要性的人,并系统地提出了二进制数的运算法则。二进制对200多年后计算机的发展产生了深远的影响。他于1716年发表了《论中国的哲学》一文,专门讨论八卦与二进制,指出二进制与八卦有共同之处。

历史起源

德国著名的数学家和哲学家莱布尼兹,对帕斯卡的加法机很感兴趣。于是,莱布尼兹也开始了对计算机的研究。

研究过程

1672年1月,莱布尼兹搞出了一个木制的机器模型,向英国皇家学会会员们做了演示。但这个模型只能说明原理,不能正常运行。此后,为了加快研制计算机的进程,莱布尼兹在巴黎定居4年。在巴黎,他与一位著名钟表匠奥利韦合作。他只需对奥利韦作一些简单的说明,实际的制造工作就全部由这位钟表匠独自去完成。1674年,最后定型的那台机器,就是由奥利韦一人装配而成的。莱布尼兹的这台乘法机长约1米,宽30厘米,高25厘米。它由不动的计数器和可动的定位机构两部分组成。整个机器由一套齿轮系统来传动,它的重要部件是阶梯形轴,便于实现简单的乘除运算。

莱布尼兹设计的样机,先后在巴黎,伦敦展出。由于他在计算设备上的出色成就,被选为英国皇家学会会员。1700年,他被选为巴黎科学院院士。

莱布尼兹在法国定居时,同在华的传教士白晋有密切联系。白晋曾为康熙皇帝讲过数学课,他对中国的易经很感兴趣,曾在1701年寄给莱布尼兹两张易经图,其中一张就是有名的“伏羲六十四卦方位圆图”。莱布尼兹惊奇地发现,这六十四卦正好与64个二进制数相对应。莱布尼兹认为中国的八卦是世界上最早的二进制记数法。为此, 莱布尼兹非常向往和崇尚中国的古代文明,他把自己研制的乘法机的复制品赠送给中国皇帝康熙,以表达他对中国的敬意。

法则

二进制的运算算术运算二进制的加法:0+0=0,0+1=1 ,1+0=1, 1+1=10(向高位进位);即7=111

10=1010 3=11

二进制的减法:0-0=0,0-1=1(向高位借位) 1-0=1,1-1=0 (模二加运算或异或运算) ;

二进制的乘法:0 * 0 = 0 0 * 1 = 0,1 * 0 = 0,1 * 1 = 1 二进制的除法:0÷0 = 0,0÷1 = 0,1÷0 = 0 (无意义),1÷1 = 1 ;

逻辑运算二进制的或运算:遇1得1 二进制的与运算:遇0得0 二进制的非运算:各位取反。

二进制与其他进制的转换

首先我们得了解一个概念,叫“权”。“权”就是进制的基底的n次幂。如二进制的权就是(2)*n了,十进制的权就是(10)*n,看到十进制我们就很自然的想到科学计算法中的(10)*n,对吧?有了权这个定义之后,我们就可以随便把一个进制的数转化成另一个进制的数了。日常生活中,由于电脑的字节,汉字西文的字节的原因,二进制最常见的转换是八进制,十六进制,三十二进制,当然还有十进制。

二进制转换成十进制的原则是:基数乘以权,然后相加,简化运算时可以把数位数是0的项不写出来,(因为0乘以其他不为0的数都是0)。小数部分也一样,但精确度较少。

二进制与八进制的转换:采用“三位一并法”(是以小数点为中心向左右两边以每三位分组,不足的补上0)这样就可以轻松的进行转换。

二进制与十六进制的转换:采用的是“四位一并法”,就如二进制与八进制的转换一样。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/24 0:46:33