词条 | 对称中心 |
释义 | 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心。 数学名词概述如果一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形叫做中心对称图形。 而这个中心点,叫做对称中心。 中心对称图形上每一对对称点所连成的线段都被对称中心平分。 在平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和另一个图形完全重合,那么就说这两个图形成中心对称。这个点叫做对称中心。 应用在自然科学和数学上,对称意味着某种变换下的不变性,即“组元的构形在其自同构变换群作用下所具有的不变性”,通常的形式有镜像对称(左右对称或者叫双侧对称)、平移对称、转动对称和伸缩对称等。物理学中守恒律都与某种对称性相联系。在日常生活中和在艺术作品中,“对称”有更多的含义,常代表着某种平衡、比例和谐之意,而这又与优美、庄重联系在一起。外尔的书首先用一章讲镜像对称,涉及手性诸问题,有十分丰富的内容。大家也许还记得,去年诺贝尔化学奖奖励的课题主要是“手性分子催化”问题。如今,手性药物在药品市场占有相当的份额,有机分子手性对称性已经是相当实用和热门的话题。这里面仍然遗留下许多基本的问题没有解答,比如生命基本物质中的氨基酸、核酸的高度一致性的手性(即手性对称破缺)是如何起源的?植物茎蔓的手性缠绕是由什么决定的?同种植物是否可能具有不同的手性?左右对称在建筑艺术中有大量应用,但是人们也注意到完全的左右对称也许显得太死板,建筑设计者常用某种巧妙的办法打破严格的左右对称,如通过园林绿化或者通过立面前的雕塑或者广场非对称布局,有意打破严格的对称。通常,严格左右对称的建筑,都尽可能放在了具有非对称的周围环境之中。公众可能较感兴趣的是作者对摩尔文化、埃及和中国实际装饰艺术品中对称性的分析。在二维装饰图案中,总共有17种本质上不同的对称性。作者说,在古代的装饰图案中,尤其是古埃及的装饰物中,能够找到所有17种对称性图案。到了19世纪,有了变换群的概念以后,人们才从理论上搞明白只有17种可能性(波利亚的证明),而古人确实穷尽了所有这些可能。 结晶学名词定义对称中心为一假想的点,相应的对称操作是对于此点反向延伸,通过此点,等距离两端必能找到相对应的点。在晶体中可没有对称中心,若有则只能有1个,出现在晶体的中心。若晶体具有对称中心,其相应的晶面、晶棱、角顶都体现反向平行。其晶面必然都是两两平行而且相等的,这一点可以用来作为判别晶体有无对称中心的依据。 对称要素(symmetry elements,elements of symmetry):在研究对称时,为使物体或图形发生有规律重复而凭借的一些几何要素(点、线、面)称为对称要素。晶体外形上可能存在的对称要素有:对称面、对称中心、对称轴、旋转反伸轴和旋转反映轴。其中旋转反伸轴与旋转反映轴之间有一定的等效关系,可以彼此取代。在晶体内部结构中,除上述对称要素外,还可能出现像移面和螺旋轴,并必定有平移轴存在。 对称的特点1.完全性:所有晶体都具有对称性。(质点在三维空间有规律的重复——格子构造所决定的); 2.有限性:晶体的对称要素是有限的。要受到晶体对称规律的控制:不出现5次或高于6次的对称轴; 3.一致性(表里如一):晶体的对称不仅体现在外形上,也体现在物理性质上,即:不仅包含几何意义,还包含物理化学意义。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。