词条 | CART |
释义 | CART(Classification And Regression Tree)算法采用一种二分递归分割的技术,将当前 的样本集分为两个子样本集,使得生成的决策树的每个非叶子节点都有两个分支。因此,CART算法生成的决策树是结构简洁的二叉树。 以下是算法描述:其中T代表当前样本集,当前候选属性集用T_attributelist表示。 (1)创建根节点N (2)为N分配类别 (3)if T都属于同一类别or T中只剩下 一个样本则返回N为叶节点,为其分配属性 (4)for each T_attributelist中属性执行该属性上的一个划分,计算此划分的GINI系数 (5)N的测试属性test_attribute=T_attributelist中最小GINI系数的属性 (6)划分T得到T1 T2子集 (7)对于T1重复(1)-(6) (8)对于T2重复(1)-(6) CART算法考虑到每个节点都有成为叶子节点的可能,对每个节点都分配类别。分配类别的方法可以用当前节点中出现最多的类别,也可以参考当前节点的分类错误或者其他更复杂的方法。 CART算法仍然使用后剪枝。在树的生成过程中,多展开一层就会有多一些的信息被发现,CART算法运行到不能再长出分支为止,从而得到一棵最大的决策树。然后对这棵大树进行剪枝。 其它定义CART(可卡因-安非他明调节转录肽):在抑制进食的弓状核神经元系统中发现的一种肽神经递质。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。