请输入您要查询的百科知识:

 

A╲B 坦白 抵赖

坦白 -8,-8 0,-10

抵赖 -10,0 -1,-1 对A来说,尽管他不知道B作何选择,但他知道无论B选择什么,他选择“坦白”总是最优的。显然,根据对称性,B也会选择“坦白”,结果是两人都被判刑8年。但是,倘若他们都选择“抵赖”,每人只被判刑1年。在表2.2中的四种行动选择组合中,(抵赖、抵赖)是帕累托最优的,因为偏离这个行动选择组合的任何其他行动选择组合都至少会使一个人的境况变差。不难看出,“坦白”是任一犯罪嫌疑人的占优战略,而(坦白,坦白)是一个占优战略均衡。

同名书籍

基本信息

作 者:范如国 著

出 版 社:武汉大学出版社

ISBN:9787307085060

出版时间:2011-04-01

版 次:1

页 数:324

装 帧:平装

开 本:16开

内容简介

《博弈论》共分十章,涵盖了非合作博弈理论、合作博弈理论和演化博弈理论。主要介绍博弈论的基本理论、静态及动态博弈理论、重复博弈、合作博弈理论和演化博弈等理论,这些内容选择的难度和写作结构对于博弈理论的初学者来说是比较合适的,通过对这些相关内容的了解和学习,可以把握博弈理论的主要内容。

《博弈论》可用作本科生、研究生学习博弈理论的教材,也可作为博弈论研究者的参考书。

图书目录

第一章 什么是博弈论

第一节 博弈论基本概念

第二节 博弈论的典型模型

第三节 博弈的分类及其要素

第四节 博弈论的产生与发展

第五节 博弈论与经济

第二章 完全信息静态博弈

第一节 静态博弈与占优策略均衡

第二节 纳什均衡

第三节 纳什均衡的应用

第四节 混合策略纳什均衡

第五节 纳什均衡的存在性

第六节 多重纳什均衡及其选择

第三章 完全且完美信息动态博弈

第一节 动态博弈的扩展式表示法

第二节 逆向归纳法

第三节 子博弈和子博弈精练纳什均衡

第四节 动态博弈模型

第五节 动态博弈中的同时选择行为

第六节 逆向归纳法的局限性和颤抖手均衡

第四章 重复博弈

第一节 重复博弈基本理论

第二节 有限次重复博弈

第三节 无限次重复博弈

第五章 不完全信息静态博弈

第一节 贝叶斯纳什均衡

第二节 贝叶斯博弈与混合策略均衡

第三节 拍卖理论

第四节 机制设计理论及显示原理

第六章 不完美信息动态博弈

第一节 不完美信息动态博弈的表示

第二节 精练贝叶斯均衡

第三节 柠檬博弈模型

第四节 逆向选择与道德风险

第七章 不完全信息动态博弈

第一节 不完全信息动态博弈的海萨尼转换

第二节 空口声明博弈

第三节 信号博弈

第四节 不完全信息下的谈判博弈

第五节 有限次重复囚徒困境中的声誉模型

第六节 四种均衡概念的比较分析

第八章 静态合作博弈

第一节 合作博弈的基本概念

第二节 核心与稳定集

第三节 沙普利值及其应用

第四节 谈判集、内核与核仁

第九章 动态合作博弈

第一节 两人微分合作博弈

第二节 多人动态合作博弈

第十章 演化博弈理论

第一节 有限理性与演化博弈理论

第二节 两个演化博弈的例子

第三节 演化稳定策略

第四节 模仿者动态模型

第五节 个体学习机制

主要参考文献

扩展阅读:

1

Dixit, A. K. and S. Skeath (2004). Games of Strategy. New York, Norton & Company.

2

McMillan, J. (1996). Games, Strategies, and Managers: How Managers Can Use Game Theory to Make Better Business Decisions. USA, Oxford University Press.Osborne, M. J. and A. Rubinstein (1994). A Course in Game Theory, The MIT Press.

3

Davis, M. D. (1997). Game Theory : A Nontechnical Introduction, Dover Publications.

4

迈尔森 (2001). 博弈论:矛盾冲突分析。 北京, 中国经济出版社。

5

迪克西特,奈尔伯夫 (2002). 策略思维-商界、政界及日常生活中的策略竞争。 北京, 中国人民大学出版社。

6

米勒 (2006). 活学活用博弈论:如何利用博弈论在竞争中获胜。 北京, 中国财政经济出版社。

7

王则柯 (2001). 对付欺诈的学问:信息经济学平话。 北京, 中信出版社。

8

王春永(2007.1).博弈论的诡计。北京。中国发展出版社。

9

董志强 (2007). 身边的博弈。 北京, 机械工业出版社。

10

联盟博弈论在通信系统中的应用(Tutorial written by Prof. Debbah, head of the Alcatel-Lucent Chair on flexible radio)http://www.supelec.fr/d2ri/flexibleradio/cours/coalition.pdf

开放分类:
理论经济学学科微观经济学博弈
“博弈论”在汉英词典中的解释(来源:百度词典):
1.game theory
“博弈论”相关词条:

百度百科中的词条内容仅供参考,如果您需要解决具体问题(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

本词条对我有帮助
合作编辑者
如果您认为本词条还需进一步完善,百科欢迎您也来参与在开始编辑前,您还可以先学习如何编辑词条

如想投诉,请到;如想提出意见、建议,请到。

词条统计
浏览次数:约 次
编辑次数:128次
最近更新:2012-03-21
创建者:冒牌黑人
更多贡献光荣榜

辛勤贡献者:

1550911 展开

遁世的精灵 展开

rhfsdgvds 展开

饮不完的杯中九 展开

game_abc 

词条 博弈论
释义

博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支, 博弈论已经成为经济学的标准分析工具之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。参见:行为生态学(behavioral ecology)。

理论历史

博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。博弈论思想古已有之,中国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

近代对于博弈论的研究,开始于策墨洛(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。

1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。

1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的学科。

诺贝尔奖

从1994年诺贝尔经济学奖授予3位博弈论专家开始,共有5届的诺贝尔经济学奖与博弈论的研究有关,分别为:

1994年,授予美国伯克利加利福尼亚大学的约翰·海萨尼(J.Narsanyi)、普林斯顿大学约翰·纳什(J.Nash)和德国波恩大学的赖因哈德·泽尔滕(Reinhard Selten)。

1996年,授予英国剑桥大学的 詹姆斯·莫里斯(James A. Mirrlees)与美国哥伦比亚大学的威廉·维克瑞(William Vickrey)。

2001年,授予美国加州大学伯克莱分校的乔治·阿克尔洛夫(George A. Akerlof )生于1940年、美国斯坦福大学的迈克尔·斯宾塞(A. Michael Spence )和美国纽约哥伦比亚大学的约瑟夫·斯蒂格利茨(Joseph E. Stiglitz)。

2005年,授予美国马里兰大学的托马斯·克罗姆比·谢林(Thomas Crombie Schelling)和耶路撒冷希伯来大学的罗伯特·约翰·奥曼(Robert John Aumann)。

2007年,授予美国明尼苏达大学的里奥尼德·赫维茨(Leonid Hurwicz)、美国普林斯顿大学的埃里克·马斯金(Eric S. Maskin)以及美国芝加哥大学的罗杰·迈尔森(Roger B. Myerson)。

作为一门工具学科能够在经济学中如此广泛运用并得到学界垂青实为罕见。

基本概念

(1)决策人:在博弈中率先作出决策的一方,这一方往往依据自身的感受、经验和表面状态优先采取一种有方向性的行动。

(2)对抗者:在博弈二人对局中行动滞后的那个人,与决策人要作出基本反面的决定,并且他的动作是滞后的、默认的、被动的,但最终占优。他的策略可能依赖于决策人劣势的策略选择,占去空间特性,因此对抗是唯一占优的方式,实为领导人的阶段性终结行为。

(3)局中人(players):在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为 “多人博弈”。

(4)策略(strategies):一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。

(5)得失(payoffs):一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。

(6)次序(orders):各博弈方的决策有先后之分,且一个博弈方要作不止一次的决策选择,就出现了次序问题;其他要素相同次序不同,博弈就不同。

(7)博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。所谓纳什均衡,它是一稳定的博弈结果。

纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人B仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。

这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a,b*)≤偶对(a*,b*)≥偶对(a*,b)。

对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略 b(属于策略集B),总有:对局中人A的偶对(a,b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。

有了上述定义,就立即得到纳什定理:

任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。

纳什定理的严格证明要用到不动点理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。

纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。

但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。

塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡。

博弈类型

博弈的分类根据不同的基准也有不同的分类。一般认为,博弈主要可以分为合作博弈和非合作博弈。 合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。

从行为的时间序列性,博弈论进一步分为静态博弈、动态博弈两类: 静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;

动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。通俗的理解:"囚徒困境"就是同时决策的,属于静态博弈;而棋牌类游戏等决策或行动有先后次序的,属于动态博弈

按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈。 完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息。

不完全信息博弈是指如果参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的信息,在这种情况下进行的博弈就是不完全信息博弈。

目前经济学家们现在所谈的博弈论一般是指非合作博弈,由于合作博弈论比非合作博弈论复杂,在理论上的成熟度远远不如非合作博弈论。非合作博弈又分为:完全信息静态博弈,完全信息动态博弈,不完全信息静态博弈,不完全信息动态博弈。与上述四种博弈相对应的均衡概念为:纳什均衡(Nash equilibrium),子博弈精炼纳什均衡(subgame perfect Nash equilibrium),贝叶斯纳什均衡(Bayesian Nash equilibrium),精炼贝叶斯纳什均衡(perfect Bayesian Nash equilibrium)。

博弈论还有很多分类,比如:以博弈进行的次数或者持续长短可以分为有限博弈和无限博弈;以表现形式也可以分为一般型(战略型)或者展开型,等等。

纳什均衡

定义

纳什均衡的定义:在博弈G=﹛S1,…,Sn:u1,…,un﹜中,如果由各个博弈方的各一个策略组成的某个策论组合(s1*,…,sn*)中,任一博弈方i的策论si*,都是对其余博弈方策略的组合(s1*,…s*i-1,s*i+1,…,sn*)的最佳对策,也即ui(s1*,…s*i-1,si*,s*i+1,…,sn*)≥ui(s1*,…s*i-1,sij*,s*i+1,…,sn*)对任意sij∈Si都成立,则称(s1*,…,sn*)为G的一个纳什均衡。

假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。纳什均衡也不意味着博弈双方达到了一个整体的最优状态,以下的囚徒困境就是一个例子。

案例-囚徒困境

在博弈论中,含有占优战略均衡的一个著名例子是由塔克给出的“囚徒困境”(prisoner's dilemma)博弈模型。该模型用一种特别的方式为我们讲述了一个警察与小偷的故事。假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果两个犯罪嫌疑人都坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪,各被判刑8年;如果只有一个犯罪嫌疑人坦白,另一个人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。下表给出了这个博弈的支付矩阵。

囚徒困境博弈 [Prisoner's dilemma]
随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 10:29:05