请输入您要查询的百科知识:

 

词条 弹性与塑性理论基础
释义

图书信息

作者:秦飞,吴斌编著

出 版 社:科学出版社出版时间:2011-8-1

版次:1

页数:247

字数:400000

印刷时间:2011-8-1

开本:16开

纸张:胶版纸

印次:1

I S B N:9787030322036

包装:平装

内容简介

由秦飞和吴斌编著的《弹性与塑性理论基础》分为预备知识、弹性理论基础和塑性理论基础三部分。预备知识主要讲解指标符号与张量分析基础;弹性理论基础部分包括应力理论、应变理论、弹性应力一应变关系、弹性方学问题的微分提法与解法、平面问题、能量原理和微分方程近似计算的基本原理;塑性理论基础部分包括塑性力学基本概念、屈服准则与硬化法则、弹塑性应力一应变关系和简单弹塑性问题。每章均有例题、复习思考题和习题,在弹性理论基础和塑性理论基础两部分的最后,还安排了计算机作业。

本书重视基本概念与基础理论,力学概念清晰,论述严谨;内容取舍适当,以期满足当前学术界和工程界对力学工作者最基本的理论素养需求。

《弹性与塑性理论基础》可作为高等学校力学专业高年级本科生、研究生教材,以及机械工程、土木工程等专业弹塑性力学课程的教材,同时也可作为高等学校、研究机构等从事力学问题研究和力学分析的研究人员和工程技术人员的参考书。

目录

前言

第0章 预备知识——指标符号与张量分析基础

0.1 引言

0.2 指标符号与求和约定

0.2.1 指标符号

0.2.2 微分运算中的指标符号

0.2.3 多重求和的指标符号表示

0.3 符号δij与erst

0.3.1 符号δij和erst的定义与性质

0.3.2 正交标准化基

0.3.3 矢量的点积(标量积)

0.3.4 矢量的叉积(矢量积)

0.3.5 矢量的混合积

0.3.6 三阶行列式的值

0.3.7 e-δ恒等式

0.4 坐标转换

0.5 张量与张量方程

0.6 张量代数与商判则

0.7 常用特殊张量

0.8 二阶张量的主方向与主分量

0.9 张量的微分、积分和场论基础

0.10 正交曲线坐标系

0.10.1 正交曲线坐标系与拉梅系数

0.10.2 单位基矢量的导数

0.10.3 正交系场论基础

0.10.4 圆柱坐标和球坐标公式

复习思考题 习题

第一篇 弹性理论基础

第1章 应力理论

1.1 引言

1.2 载荷及其分类

1.3 内力、应力和一点的应力状态

1.4 柯西应力公式(斜截面应力公式)

1.5 应力分量转换公式

1.6 主应力与应力不变量

1.7 应力偏量

1.8 八面体应力

1.9 应力的几何表示

1.10 平衡微分方程

1.11 正交曲线坐标系中的平衡方程

复习思考题 习题

第2章 应变理论

2.1 引言

2.2 格林应变张量

2.2.1 位移的数学描述

2.2.2 位移与应变的关系、格林应变张量

2.2.3 由应变张量计算变形

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/31 18:46:58