请输入您要查询的百科知识:

 

词条 自然数
释义

用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,……所表示的数 。表示物体个数的数叫自然数,自然数由0开始(包括0), 一个接一个,组成一个无穷的集体。

数学术语

常用大写字母N表示

【拼音】zì rán shù

【英译】natural number; whole number

即指:全体非负整数组成的集合 常用 N 来表示

一般概念

自然数是一切等价有限集合共同特征的标记。

注:自然数就是我们常说的正整数和0。整数包括自然数,所以自然数一定是整数且一定是非负数。

但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不总是成立的。用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,……所表示的数 。表示物体个数的数叫自然数,自然数由0开始(包括0), 一个接一个,组成一个无穷集体。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。

(序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义)

自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在 N 中找到一个元素作为它的后继者。③ 1是0的后继者。④0不是任何元素的后继者。 ⑤不同元素有不同的后继者。⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。

基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数 , 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。

自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。

自然数是整数(自然数包括正整数和零),但整数不全是自然数,例如:-1 -2 -3......是整数 而不是自然数。自然数是无限的。

全体非负整数组成的集合称为非负整数集(即自然数集)

在数物体的时候,数出的1.2.3.4.5.6.7.8.9……叫自然数。自然数有数量、次序两层含义,分为基数、序数。 基本单位:1 计数单位:个、十、百、千、万……

总之,自然数就是指大于等于0的整数。当然,负数、小数、分数等就不算在其内了。

严格定义

自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论:自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。

序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义。

自然数集N是指满足以下条件的集合:①N中有一个元素,记作0。②N中每一个元素都能在 N 中找到一个元素作为它的后继者。③ 0不是任何元素的后继者。④ 不同元素有不同的后继者。⑤(归纳公理)N的任一子集M,如果0∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。

基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数(用集合的形式表示) , 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。

性质

对自然数可以定义加法和乘法。其中,加法运算“+”定义为:

a + 0 = a;

a + S(x) = S(a + b), 其中,S(x)表示x的后继者。

如果我们将S(0)定义为符号“1”,那么b + 1 = b + S(0) = S( b + 0 ) = S(b),即,“+1”运算可求得任意自然数的后继者。

同理,乘法运算“×”定义为:

a × 0 = 0;

a × S(b) = a × b + a

自然数的减法和除法可以由类似加法和乘法的逆的方式定义。但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。

分类

①按能否被2整除分

可分为奇数和偶数。

1、奇 数:不能被2整除的数叫奇数。

2、偶 数:能被2整除的数叫偶数。

注:0是偶数。(2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。偶数可以被2整除,0照样可以,只不过,得数依然是0而已,但是不可以说它没有缩小)。

②按因数个数分

可分为质数、合数和1

1、质 数:只有1和它本身这两个因数的自然数叫做质数。[质数也称作素数]。

2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。

3、1:只有1个因数。它既不是质数也不是合数。[当然0不能计算因数也一样是非质数、非合数]。

注:是因数不是约数。

关于0

“0”是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。目前关于这个问题尚无一致意见。不过,在数论中,多采用前者;在集合论中,则多采用后者。

我国传统的教科书所说的自然数都是指正整数。在国外,有些国家的教科书是把0也算作自然数的。这本是一种人为的规定,我国为了推行国际标准化组织(ISO)制定的国际标准,定义自然数集包含元素0,也是为了早日和国际接轨。

现行九年义务教育教科书和高级中学教科书(试验修订本)都把非负整数集也叫做自然数集,记作N,而正整数集记作N+或N*。这就一改以往0不是自然数的说法,明确指出0也是自然数集的一个元素。0同时也是有理数,也是非负数和非正数。

最小的自然数0

0是极为重要的数字,0的发现被称为人类伟大的发现之一。0在我国古代叫做金元数字,(意即极为珍贵的数字)。0这个数据说是由印度人在约公元5世纪时发明,在1202年时,一个商人写了一本算盘之书,在东方中由于数学是以运算为主(西方当时以几何并在开头写了“印度人的9个数字,加上阿拉伯人发明的0符号便可以写出所有数字……”由于一些原因,在初引入0这个符号到西方时,曾经引起西方人的困惑, 因当时西方认为所有数都是正数,而且0这个数字会使很多算式、逻辑不能成立(如除以0),甚至认为是魔鬼数字,而被禁用。直至约公元15,16世纪0和负数才逐渐给西方人所认同,才使西方数学有快速发展。 0的另一个历史:0的发现始于印度。公元左右,印度最古老的文献《吠陀》已有“0”这个符号的应用,当时的0在印度表示无(空)的位置。约在6世纪初,印度开始使用命位记数法。7世纪初印度大数学家葛拉夫.玛格蒲达首先说明了0的0是0,任何数加上0或减去0得任何数。遗憾的是,他并没有提到以命位记数法来进行计算的实例。也有的学者认为,0的概念之所以在印度产生并得以发展,是因为印度佛教中存在着“绝对无”这一哲学思想。公元733年,印度一位天文学家在访问现伊拉克首都巴格达期间,将印度的这种记数法介绍给了阿拉伯人,因为这种方法简便易行,不久就取代了在此之前的阿拉伯数字。这套记数法后来又传入西欧。

0既不是正数也不是负数,而是正数和负数之间的一个数。当某个数X大于0(即X>0)时,称为正数;反之,当X小于0(即X<0)时,称为负数;而这个数X等于0时,这个数就是0。

0是电筒数(阵)中最小的的积;也是电筒数(阵)中唯一一个第一个乘数同值的积。

0既不是正数也不是负数,而是介于-1和+1之间的整数。

0是偶数。

0是最小的完全平方数。

0的相反数是0,即,—0=0。

0的绝对值是其本身,即,∣0∣=0。

0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。

0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

0的正数次方等于0,0的负数次方无意义,因为0没有倒数。

除0外,任何数的的0次方等于1。

0的0次方是悬而未决的,在某些领域定义为1,某些领域未定义。不定义的理由是以连续性为考量,不定义不连续点。

0不能做对数的底数和真数。

0也不能做除数、分数的分母、比的后项。

0在多位数中起占位作用,如108中的0表示十位上没有,切不可写作18。

0不可作为多位数的最高位。

当0不位于其他数字之前时表示一个有效数字。

0的阶乘等于1。

0始终是直角坐标系的原点。

0是正数和负数的分界点。

任何数乘0都得0。

0是最小的自然数。

分式中分母为0无意义。

在复数集中,0是模最小的数,而且是唯一一个无辐角定义的元素。

低阶无穷小与高阶无穷小的比值是0。

定积分中,积分上限和下限相等时,积分值始终为0。

概率论中,用0表示不可能事件,或者在连续概率分布中位于某一特定自变量这一事件的概率。

自然数列

相关概念

数列1,2,3,4,5,6,7,8,9,10,11,12,……n

称为自然数列。

自然数列不包括0。

自然数列的通项公式an=n。

自然数列的前n项和Sn=n(n+1)/2。

自然数列本质上是一个等差数列,首项a1=1,公差d=1

在数学中的应用

1、自然数列在“数列”,有着最广泛的运用,因为所有的数列中,各项的序号都组成自然数列。

任何数列的通项公式都可以看作:数列各项的数与它的序号之间固定的数量关系。

2、求n条射线可以组成多少个角时,应用了自然数列的前n项和公式

第1条射线和其它射线组成n-1个角,第2条射线跟余下的其它射线组成n-2个角,依此类推得到式子

1+2+3+4+……+n-1=n(n-1)/2

3、求直线上有n个点,组成多少条线段时,也应该了自然数列的前n项和公式

第1个点和其它点组成n-1条线段,第2个点跟余下的其它点组成n-2条线段,依此类推同样可以得到式子

1+2+3+4+……+n-1=n(n-1)/2

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/1 4:16:21