词条 | 自回归模型 |
释义 | 概述向量自回归模型(简称VAR模型)是一种常用的计量经济模型,由克里斯托弗·西姆斯(Christopher Sims)提出。它是AR模型的推广。 定义VAR模型描述在同一样本期间内的n个变量(内生变量)可以作为它们过去值的线性函数。 例1.Yt = α+βXt-1 + ut, t = 1,2,…,n 本例中Y的现期值与X的一期滞后值相联系,比较一般的情况是: Yt = α+β0Xt +β1Xt-1 +……+βsXt-s + ut, t = 1,2,…,n 即Y的现期值不仅依赖于X的现期值,而且依赖于X的若干期滞后值。这类模型称为分布滞后模型,因为X变量的影响分布于若干周期。 例2.Yt = α+βYt-1 + ut, t = 1,2,…,n 本例中Y的现期值与它自身的一期滞后值相联系,即依赖于它的过去值。一般情况可能是: Yt = f (Yt-1, Yt-2, … , X2t, X3t, … ) 即Y的现期值依赖于它自身若干期的滞后值,还依赖于其它解释变量。 在本例中,滞后的因变量(内生变量)作为解释变量出现在方程的右端。这种包含了内生变量滞后项的模型称为自回归模型。 在这类模型中,由于在X和它的若干期滞后之间往往存在数据的高度相关,从而导致严重多重共线性问题。因此,分布滞后模型极少按(1)式这样的一般形式被估计。通常采用对模型各系数βj施加某种先验的约束条件的方法来减少待估计的独立参数的数目,从而避免多重共线性问题,或至少将其影响减至最小。这方面最著名的两种方法是科克方法和阿尔蒙方法。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。