词条 | 一元二次方程 |
释义 | 一元二次方程,就是只有一个未知数且未知数最高次数为2的整式方程,其一般形式为ax^2+bx+c=0 定义只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程( quadratic equation of one variable )。 一元二次方程有四个特点: (1)含有一个未知数; (2)且未知数次数最高次数是2; (3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.里面要有等号,且分母里不含未知数。 (4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a、b、c为常数,a≠0) 补充说明1、该部分的知识为初等数学知识,一般在初三就有学习。(但一般二次函数与反比例函数会涉及到一元二次方程的解法) 2、该部分是中考的热点。 3、方程的两根与方程中各数有如下关系: X1+X2= -b/a,X1·X2=c/a(也称韦达定理) 4、方程两根为x1,x2时,方程为:x^2-(x1+x2)X+x1x2=0 (根据韦达定理逆推而得) 5、在系数a>0的情况下,b^2-4ac>0时有2个不相等的实数根,b^2-4ac=0时有两个相等的实数根,b^2-4ac<0时无实数根。 一般式ax^2+bx+c=0(a、b、c是实数,a≠0) 例如:x^2+2x+1=0 配方式a(x+b/2a)^2=(b^2-4ac)/4a^2 两根式(交点式)a(x-x1)(x-x2)=0 一般解法 1.分解因式法(可解部分一元二次方程) 因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。 如 1.解方程:x^2+2x+1=0 解:利用完全平方公式因式解得:(x+1﹚^2=0 解得:x?= x?=-1 2.解方程x(x+1)-3(x+1)=0 解:利用提公因式法解得:(x-3)(x+1)=0 即 x-3=0 或 x+1=0 ∴ x1=3,x2=-1 3.解方程x^2-4=0 解:(x+2)(x-2)=0 x+2=0或x-2=0 ∴ x?=-2,x?= 2 十字相乘法公式: x^2+(p+q)x+pq=(x+p)(x+q) 例: 1. ab+b^2+a-b- 2 =ab+a+b^2-b-2 =a(b+1)+(b-2)(b+1) =(b+1)(a+b-2) 2.公式法(可解全部一元二次方程) 首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根 1.当Δ=b^2-4ac<0时 x无实数根(初中) 2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2 3.当Δ=b^2-4ac>0时 x有两个不相同的实数根 当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a 来求得方程的根 3.配方法(可解全部一元二次方程) 如:解方程:x^2+2x-3=0 解:把常数项移项得:x^2+2x=3 等式两边同时加1(构成完全平方式)得:x^2+2x+1=4 因式分解得:(x+1)^2=4 解得:x1=-3,x2=1 用配方法解一元二次方程小口诀 二次系数化为一 常数要往右边移 一次系数一半方 两边加上最相当 4.开方法(可解部分一元二次方程) 如:x^2-24=1 解:x^2=25 x=±5 ∴x?=5 x?=-5 5.均值代换法(可解部分一元二次方程) ax^2+bx+c=0 同时除以a,得到x^2+bx/a+c/a=0 设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0) 根据x1*x2=c/a 求得m。 再求得x1, x2。 如:x^2-70x+825=0 均值为35,设x1=35+m,x2=35-m (m≥0) x1*x2=825 所以m=20 所以x?=55, x?=15。 一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到) 一般式:ax^2+bx+c=0的两个根x?和x?的关系: x1+x2= -b/a x1*x2=c/a 如何选择最简单的解法1.看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法) 2.看是否可以直接开方解 3.使用公式法求解 4.最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦)。 如果要参加竞赛,可按如下顺序: 1.因式分解 2.韦达定理 3.判别式 4.公式法 5.配方法 6.开平方 7.求根公式 8.表示法 例题精讲1、开方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n 例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)^2=7 3x+1=±√7 x= ... ∴x1=...,x2= ... (2)解: 9x^2-24x+16=11 (3x-4)^2=11 3x-4=±√11 x= ... ∴x1=...,x2= ... 2.配方法: 例1 用配方法解方程 3x^2-4x-2=0 解:将常数项移到方程右边 3x^2-4x=2 将二次项系数化为1:x^2-4/3x=2/3 方程两边都加上一次项系数一半的平方:x^2-4/3x+( -2/3)^2= 2/3+(-2/3 )^2 配方:(x-2/3)^2=10/9 直接开平方得:x-2/3=±√(10)/3 ∴x?= , x?= . ∴原方程的解为x?=,x?= . 3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。 当Δ=b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根) 当Δ=b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根) 当Δ=b^2-4ac<0时,求根公式为x1=[-b+√(4ac-b^2)i]/2a,x2=[-b-√(4ac-b^2)i]/2a (两个虚数根)(初中理解为无实数根) 例3.用公式法解方程 2x^2-8x=-5 解:将方程化为一般形式:2x^2-8x+5=0 ∴a=2, b=-8,c=5 b^2-4ac=(-8)^2-4×2×5=64-40=24>0 ∴x= (4±√6)/2 ∴原方程的解为x?=(4+√6)/2,x?=(4-√6)/2. 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0 (3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x?=5,x?=-2是原方程的解。 (2)解:2x^2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x?=0,x?=-3/2是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程通常有两个解。 (3)解:6x^2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x?=5/2, x?=-10/3 是原方程的解。 (4)解:x^2-4x+4 =0 (x-2)(x-2 )=0 ∴x?=2 ,x?=2是原方程的解。 小结一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算根的判别式的值,以便判断方程是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。 课外拓展一元二次方程 一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二次的整式方程。 一般形式为ax^2+bx+c=0, (a≠0)。在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:已知一个数与它的倒数之和等于一个已给数,求出这个数,使 x1+ x2 =b,x1·x2=1,x^2-bx+1=0, 他们再做出解答 。可见巴比伦人已知道一元二次方程的求根公式。但他们当时并不接受 负数,所以负根是略而不提的。 埃及的纸草文书中也涉及到最简单的二次方程,例如:ax^2=b。 在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式。 希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。 公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x^2+px+q=0的一个求根公式。 在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令 a、b、c为正数,如ax^2=bx、ax^2=c、 ax^2+c=bx、ax^2+bx=c、ax^2=bx+c 等。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。 十六世纪意大利的数学家们为了解三次方程而开始应用复数根。 韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。 我国《九章算术.勾股》章中的第二十题是通过求相当于 x^2+34x-71000=0的正根而解决的。我国数学家还在方程的研究中应用了内插法。 判别方法一、教学内容分析 “一元二次方程的根的判别式”一节,在《华师大版》的新教材中是作为阅读材料的。从定理的推导到应用都比较简单。但是它在整个中学数学中占有重要的地位,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究不等式,二次三项式,二次函数,二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。通过这一节的学习,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,渗透数学的简洁美。 教学重点:根的判别式定理及逆定理的正确理解和运用 教学难点:根的判别式定理及逆定理的运用。 教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。 二、学情分析 学生已经学过一元二次方程的四种解法,并对 的作用已经有所了解,在此基础上来进一步研究 作用,它是前面知识的深化与总结。从思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。 三、教学目标 依据教学大纲和对教材的分析,以及结合学生已有的知识基础,教学目标是: 知根的情况,因此,我们把叫做一元二次方程的根的判别式,通常用符号"△" 解题步骤(1)分析题意,找到题中未知数和题给条件的相等关系; (2)设未知数,并用所设的未知数的代数式表示其余的未知数; (3)找出相等关系,并用它列出方程; (4)解方程求出题中未知数的值; (5)检验所求的答案是否符合题意,并做答. 经典例题精讲1.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 2.解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法. 3.一元二次方程 (a≠0)的根的判别式正反都成立.利用其可以(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题. 4.一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 韦达定理韦达定理实质上就是一元二次方程中的根与系数关系 韦达定理(Viete's Theorem)的内容 一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 设两个根为X1和X2 则X1+X2= -b/a X1*X2=c/a 韦达定理的推广 韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0 它的根记作X1,X2…,Xn 我们有 ∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=(-1)^2*A(n-2)/A(n) … ΠXi=(-1)^n*A(0)/A(n) 其中∑是求和,Π是求积。 如果一元二次方程在复数集中的根是,那么法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 由代数基本定理可推得:任何一元 n 次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得韦达定理。 韦达定理在方程论中有着广泛的应用。 韦达定理的证明 设x1,x2是一元二次方程ax^2+bx+c=0的两个解。 有:a(x-x1)(x-x2)=0 所以 ax^2-a(x1+x2)x+ax1x2=0 通过对比系数可得: -a(x1+x2)=b ax1x2=c 所以 x1+x2=-b/a x1x2=c/a 韦达定理推广的证明 设x1,x2,……,xn是一元n次方程∑AiX^i=0的n个解。 则有:An(x-x1)(x-x2)……(x-xn)=0 所以:An(x-x1)(x-x2)……(x-xn)=∑AiX^i (在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理) 通过系数对比可得: A(n-1)=-An(∑xi) A(n-2)=An(∑xixj) ~~~ A0==(-1)^n*An*ΠXi 所以:∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=(-1)^2*A(n-2)/A(n) ~~~ ΠXi=(-1)^n*A(0)/A(n) 其中∑是求和,Π是求积。 计算机解一元二次方程VB实现方法 '该代码仅可实现一般形式的求值,并以对话框形式显示。 dim a,b,c,x1,x2 '在这里添加a、b、c的赋值过程 '例如:a=text1.text 'b=text2.text 'c=text3.text '以上代码为赋值 if a <> 0 and b <> 0 and c<> 0 then if a*2 <> 0 and b^2-4*a*c<>0 then x1=((0-b)+Sqr(b^2-4*a*c))/(2*a) msgbox x1 x2=((0-b)-Sqr(b^2-4*a*c))/(2*a) msgbox x2 else msgbox("b^2-4*a*c和a不能为零") end if end if |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。