词条 | 星形线 |
释义 | 星形线(Astroid) 星形线的方程直角坐标方程:x^(2/3)+y^(2/3)=a^(2/3) 参数方程:x=a*(cost)^3,y=a*(sint)^3 (t为参数) 星形线的性质最先对星形线进行研究是Johann Bernouli。星形线由于有四个尖端,所以有时也被称为四尖内摆线(tetracuspid)。星形线于1836年被正式定名,首次出现在正式出版的图书(出版于维也纳)中。星形线还有许多有趣的名称:cubocycloid和paracycle。 星形线的周长为6*a,它所包围的面积为3*PI*a^2/8. 它与x轴围成的区域绕x轴旋转而成的旋转体体积为32*PI*a^3/105. 若星形线上某一点切线为T,则其斜率为tan(p),其中p为极坐标中的参数。相应的切线方程为 T: x*sin(p)+y*cos(p)=a*sin(2p)/2 。 如果切线T分别交x、y轴于点x(X,0)、y(0,Y),则线段xy恒为常数,且为a。 星形线是由半径为a/4的圆在半径为a的内侧转动形成的。 在第一象限 星形线 也可由靠在Y轴上一个线段在重力作用下扫过的图形 (阴影里的另一个弧是圆的一部分以做对比) 星形线的应用星形线与汽车门 我们知道,世界上有许多伟大的建筑,门的设计也是建筑家特别注意的。但是,最普通的门只有两种:完整一扇和对开的两扇。普通的房门是完整的一扇,一般的校门是对开的两扇,而公共汽车的门不但是对开的两扇,而且每一扇都由相同的两半用铰链铰接而成。开门关门时,以靠近门轴的半扇绕着门轴旋转,另半扇的外端沿着连接两个门轴的滑槽滑动,开门时一扇门折拢成为半扇,关门时又重新伸展成一扇。公共汽车的这个特殊门是根据星形线设计制造的。 星形线像夜空中光芒四射的星星,因此得名。在纸上任意作若干条长度为R的线段,使它们的两端分别在x轴和y轴上,然后在每一象限里画一段光滑的曲线弧,使它们与这些线段相切,这样一条星形线就画出来了。由画图过程可以看出,星形线是由一组直线包络构成的。 一扇折叠式的公共汽车车门可以表示成平面形式,其中O是门轴,OB为滑槽。在车门开闭过程中,定长BC的两端分别沿x轴和y轴滑动,因此可得到一条星形线,但由于车门只是在第一象限活动,所以一扇车门实际活动的过程如上图的形状,它是由圆弧MN和星形线弧NP构成。也就是说这扇车门活动的范围,由扇形OMN的面积、三角形ONQ的面积与星形线弧所组成的曲边三角形面积的和所组成。根据计算,它的总面积为 。而一扇宽度为2a的普通车门开关的过程形成一条以2a为半径的 圆弧,它的面积为 。因此一扇折叠式车门所占的地方只占普通车门的 ,大大节约了空间,使车辆能载更多的乘客。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。