词条 | 同阶无穷小 |
释义 | 无穷小量如果在x→0时,f(X)=0,则称f(X)=0是当x→0时的无穷小量,简称无穷小。 无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与零无限接近,即f(x)=0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。例如,f(x)=(x-1)^2是当x→1时的无穷小量,f(1/n)=是当n→∞时的无穷小量,f(x)=sinx是当x→0时的无穷小量(注意:特别小的数和无穷小量不同)。 同阶无穷小如果lim F(x)=0,lim G(x)=0,且lim F(x)/G(x)=c,并且c≠0,则称F(x)和 G(x)是同阶无穷小。例如: 计算极限:lim(1-cosx)/x^2在x→0时,得到值为1/2,则说在x→0时,(1-cosx)与x^2是同阶无穷小 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。