词条 | 数制 |
释义 | 虽然计算机能极快地进行运算,但其内部并不像人类在实际生活中使用的十进制,而是使用只包含0和1两个数值的二进制。当然,人们输入计算机的十进制被转换成二进制进行计算,计算后的结果又由二进制转换成十进制,这都由操作系统自动完成,并不需要人们手工去做,学习汇编语言,就必须了解二进制(还有八进制/十六进制)。 数制也称计数制,是用一组固定的符号和统一的规则来表示数值的方法。人们通常采用的数制有十进制、二进制、八进制和十六进制。 基本概念1. 数码数制中表示基本数值大小的不同数字符号。例如,十进制有10个数码:0、1、2、3、4、5、6、7、8、9。 2. 基数数制所使用数码的个数。例如,二进制的基数为2;十进制的基数为10。 3. 位权数制中某一位上的1所表示数值的大小(所处位置的价值)。例如,十进制的123,1的位权是100,2的位权是10,3的位权是1。 4. 数制计数的规则。在人们使用最多的进位计数制中,表示数的符号在不同的位置上时所代表的数的值是不同的。 5. 十进制人们日常生活中最熟悉的进位计数制。在十进制中,数用0,1,2,3,4,5,6,7,8,9这十个符号来描述。计数规则是逢十进一。 6. 二进制在计算机系统中采用的进位计数制。在二进制中,数用0和1两个符号来描述。计数规则是逢二进一。 7. 十六进制人们在计算机指令代码和数据的书写中经常使用的数制。在十六进制中,数用0,1,…,9和A,B,…,F(或a,b,…,f)16符号来描述。计数规则是逢十六进一。 转换下面我们来看看各数制之间是怎么转换的: 一:其它进制转换为十进制方法是:将其它进制按权位展开,然后各项相加,就得到相应的十进制数。 例1: N=(10110.101)B=(?)D 按权展开N=1*2^4+0*2^3+1*2^2+1*2^1+0*2^0+1*2^-1+0*2^-2+1*2^-3 =16+4+2+0.5+0.125 =(22.625)D 二:将十进制转换成其它进制方法是: 它是分两部分进行的即整数部分和小数部分。 整数部分:(基数除法) 把我们要转换的数除以新的进制的基数,把余数作为新进制的最低位; 把上一次得的商在除以新的进制基数,把余数作为新进制的次低位; 继续上一步,直到最后的商为零,这时的余数就是新进制的最高位. 小数部分: (基数乘法) 把要转换数的小数部分乘以新进制的基数,把得到的整数部分作为新进制小数部分的最高位 把上一步得的小数部分再乘以新进制的基数,把整数部分作为新进制小数部分的次高位; 继续上一步,直到小数部分变成零为止。或者达到预定的要求也可以。 三:二进制与八进制、十六进制的相互转换二进制转换为八进制、十六进制:它们之间满足23和24的关系,因此把要转换的二进制从低位到高位每3位或4位一组,高位不足时在有效位前面添“0”,然后把每组二进制数转换成八进制或十六进制即可 八进制、十六进制转换为二进制时,把上面的过程逆过来即可。 例3:N=(C1B)H=(?)B (C1B)H=1100/0001/1011=(110000011011)B |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。