词条 | 纳米管 |
释义 | 纳米管比人的头发丝还要细1万倍,而它的硬度要比钢材坚硬100倍。它可以耐受6500°F(3593℃)的高温,并且具有卓越的导热性能。纳米管既可以用作金属导电体,比金的电高多得多,也可以用作制造电脑芯片所必须的半导体。纳米管在极低的温度下还具有超导性。 简介世界上有很多研究小组都在研发结构紧凑、效率更高的电脑,而随着集成电集成度的不断提高,芯片散热的问题也就显得愈加突出。研究人员测算发现,纳米管的导热性能与已知的最佳热导体钻石几近,甚至纳米管的导热性能最终能达到钻石的两倍。摆在电脑设计人员面前的另一个问题是电路体积的缩小。研究人员发现采用硅芯片的容量最终将受制于物理障碍。那么,采用分子技术则是势在必然。如果说越小越好,那么纳米管理所当然是最好的材料。纳米管的管壁可以薄到只有一个原子,呈六角形排列的碳原子所构成的中空管直径比一根人发还要细1万倍。纳米管的长度可以达到其厚度的数千倍,这使它们具备了多种功用。 分类纳米管的类别有:硅纳米管、单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、功能化多壁碳纳米管、短多壁碳纳米管、工业化多壁碳纳米管、石墨化多壁碳纳米管、大内径薄壁碳纳米管、镀镍碳纳米管。 技术纳米管的技术主要体现在纳米技术。纳米技术是20世纪80年代末期刚刚诞生并正在迅速崛起的用原子和分子创制新物质的技术,是研究尺寸范围在在一百纳米以下的物质的组成,在这种水平上对物质和材料进行研究处理的技术称为纳米技术。美国的国家纳米科技启动计划(National Nanotechnology Initiative)将其定义为“1至100纳米尺寸间的物体,其中能有重大应用的独特现象的了解与操纵。” 这个极其微小的空间,正好是原子和分子的尺寸范围,也是它们相互作用的空间。在这样的一个尺度空间,由于量子效应、物质的局域性及巨大的表面和界面效应,使物质的很多性能发生质变。纳米科技是学习纳米尺度下的现象以及物质的掌控,尤其是对现存科技在纳米研究的延伸。纳米科技的世界为原子、分子、高分子、量子点和高分子集合,并且他们的表面效应有着显著的特点,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子隧穿等,而惯性和湍流等在大的物体时显示的效应则小得可以被忽略掉。 功用在纳米管应用于电脑运算的发展进程中,一个重要的里程碑就是把纳米管制造成电脑中所用的开关或晶体管。1998年,IBM公司所属威特森研究中心的一个研究小组即以此为目标进行了研究。研究人员证明单个的纳米管可以具有晶体管的作用,而且提高了其晶体智的导电性能。 然而,应用于电脑运算也只是纳米管展露其优越性的一个方面。人们可以把这些微型管粘合在一起,制成纤维或绳索,用作超导线缆,或者塑料及其他高级材料的超强加固剂。如果纳米管具备极强的挠性、强度和恢复力,它们将可合成高性能的体育和航空材料。由于其强大的张力,它们具有弯而不折且能恢复原来形状的特殊性能。 此外,纳米管还可应用于最需要导热性能的地方。例如,电动机如果采用纳米管做散热片,其中的塑料部件就不会被高温所熔化。这种微型材料还可置入需要耐受极度高温的材料之中,如飞机和火箭外部的嵌板等。美国国家航宇和宇航局期望将纳米管置入从防热层到宇航服等各种设施之中。 能源公司对纳米管也刮目相看。纳米管可以用来制造更小、更轻、效能更高的燃料电池,它还能够用于贮存用作能源的氢气。研究人员在平玻璃片或其他材料上把无数个纳米管排列起来,让它们看起来像一片收割的整齐麦田。日本的NEC和韩国的三星公司准备将这种由纳米管组成的“田野”做成电视机的显示屏,以取代目前电视机所采用的老式阴极射线管。 性质电学性质纳米碳管的电学性能包括导电性能和超导特性两个部分,其中前一部分研究得最多。理论与实验均证实纳米碳管的导电性质与其微结构有着密切的关系。早期的实验发现,一些纳米碳管应是金属或窄能隙的半导体。1996年,Langer等人开始用两电极法研究单根多壁纳米碳管的输运特性,而Ebbesen等人为了避免样品的不良电接触,改用四电极法测量了单根多壁纳米碳管的电学特性。从单根多壁纳米碳管的电阻R来看,它们的差别确实很大,有些纳米碳管属于金属,而另一些属于半导体。一些研究组的实验显示,纳米碳管的电学性能与螺旋度有密切关联。 热学性质纳米碳管最令人瞩目的热学性能是导热系数。理论预测纳米碳管的导热系数很可能大于金刚石而成为世界上导热率高的材料。不过,测量单根纳米碳管的导热系数是一件很困难的事情,目前还没有获得突破。将电弧法制备的单壁纳米碳管轧成相对密度为70%,尺寸为5mm×2mm×2mm的方块,Hone测得了室温下未经处理的纳米碳管块材的导热率为35W/(M·K),该值远小于理论预测值。显然,纳米碳管块材中的空隙和纳米碳管之间的接触都将极大地减小纳米碳管块材的导热率。而且,与石墨相类似,纳米碳管沿轴方向与垂直于轴向方向的导热能力应有很大的不同。因此,该结果不能代表纳米碳管的实际热率。正如单根纳米碳管的电导率是纳米碳管体材料的电导率的50—150倍一样,如果单根纳米碳管的电导率也是如此,那么纳米碳管的导热率应为1750—5800W/(M·K)。通过测量纳米碳管块材的导热率与温度的关系曲线可以推断,纳米碳管的导热是由声子决定的,并就此估计出纳米碳管中声子的平均自由程约为0.5—1.5μm。 利用X射线衍射和透射电子显微镜研究纳米碳管在5.5Gpa下的热稳定性也取得了重要进展。根据以往的研究,在常压真空条件下纳米碳管的热稳定性非常好,其结构在2800℃以下可能并不发生变化。实验发现,在5.5Gpa压力下,虽然纳米碳管的微结构在低温时没有发生明显的改变,但在950℃即开始发生变化,转变成类巴基葱和类条带结构,而在1150℃时转变成石墨结构,高压是这种转变的主要原因,高压可以促使纳米碳管结构的破裂,从而降低它的热稳定性。 历史1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 1993年,S.Iijima等和DS。Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。 1997年,AC.Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。初步结果表明:碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。适当加热,氢气就可以慢慢释放出来。研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。 |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。