请输入您要查询的百科知识:

 

词条 中子星
释义

§ 基本简介

非常靠近地球的中子

中子星,又名波霎(注:脉冲星都是中子星,但中子星不一定是脉冲星,我们必须要收到它的脉冲才算是。)是恒星演化到末期,经由重力崩溃发生超新星爆炸之后,可能成为的少数终点之一。恒星在核心的氢于核聚变反应中耗尽,完全转变成铁时便无法从核聚变中获得能量。失去热辐射压力支撑的外围物质受重力牵引会急速向核心坠落,有可能导致外壳的动能转化为热能向外爆发产生超新星爆炸,或者根据局恒星质量的不同,整个恒星被压缩成白矮星、中子星以至黑洞。

白矮星被压缩成中子星的过程中恒星遭受剧烈的压缩使其组成物质中的电子并入质子转化成中子,直径大约只有十余公里,但上头一立方厘米的物质便可重达十亿吨,且旋转速度极快,而由于其磁轴和自转轴并不重合,磁场旋转时所产生的无线电波可能会以一明一灭的方式传到地球,有如人眨眼,故又译作波霎。

中子星的密度为10的11次方千克/立方厘米, 也就是每立方厘米的质量竟为一亿吨之巨。中子星是除黑洞外密度最大的星体,同黑洞一样,也是20世纪60年代最重大的发现之一。

乒乓球大小的中子星相当于地球上一座山的重量。这是20世纪激动人心的重大发现,为人类探索自然开辟了新的领域,而且对现代物理学的发展产生了深远影响,成为上世纪60年代天文学的四大发现之一。中子星的組成粒子圖

中子星-內部結構圖

§ 基本性质

望远镜镜头下的中子星

(1)无例外地都是很小的,小得出奇。它的典型直径只有10公里,也就是说,小小中子星的“腰围”只有30多公里,相当于一辆汽车以普通速度行驶1小时的距离。可是,就是这么颗小个子恒星,却有那么多的极端的物理条件,也真是够惊人的!

(2)密度大得惊人。密度一般用1立方厘米有多少克来表示,水的密度是每立方厘米重1克,铁是7.9克,汞是13.6克。如果我们从脉冲星上面取下1立方厘米物质,称一下,它可重1亿吨以上、甚至达到10亿吨。假定我们地球的密度也达到这种闻所未闻的惊人程度的话,那它的平均直径就不是1371公里,而是一二百米或更小。

(3)温度高得惊人。据估计,中子星的表面温度就可以达到1000万度,中心还要高数百万倍,譬如说达到60亿度。我们以太阳来作比较,就可以有个稍具体的概念:太阳表面温度6000℃不到,越往里温度越高,中心温度约1500万度。

(4)压力大得惊人。我们地球中心的压力大约是300多万个大气压,即我们平常所说的1标准大气压的300多万倍。脉冲星的中心压力据认为可以达到10000亿亿亿个大气压,比地心压力强30万亿亿倍,比太阳中心强3亿亿倍。

(5)特别强的磁场。在地球上,地球磁极的磁场强度最大,但也只有0.7高斯(高斯是磁场强度的单位)。太阳黑子的磁场更是强得不得了,约1000~4000高斯。而大多数脉冲星表面极区的磁场强度就高达10000亿高斯,甚至20万亿高斯。

脉冲星都是我们银河系内的天体,距离一般都是几千光年,最远的达55000光年左右。根据一些学者的估计,银河系内中子星的总数至少应该在20万颗以上,到80年代末,已经发现了的还不到估计数的千分之五。今后的观测、研究任务还很艰巨。

中子星从发现至今,只有短短二三十年的时间,尽管如此,不论在推动天体演化的研究方面,在促进物质在极端条件下的物理过程和变化规律的研究方面,它已经为科学家们提供了非常丰富而不可多得的观测资料,作出了贡献。同时,它也在这个新开拓的领域内,向人们提出了一连串的问题和难解的谜。

§ 基本特征

中子星的内部特征

对于中子星内部的密度高达10的16次方克/立方厘米的物态,目前有三种不同的看法:①超子流体;②固态的中子核心;③中子流体中的π介子凝聚。在极高密度下,当重子核心彼此重迭得相当紧密时(这种情形有可能出现于大质量中子星的中心部分),物质的性质如何,是一个完全没有解决的问题。中子星的质量下限约为0.1太阳质量,上限在1.5~2太阳质量之间。中子星半径的典型值约为10公里。密度最低的固态表面是高密度的铁。

中子星另一个重要特征是存在强度极高的磁场,超过10的12次方高斯,它使表层的铁聚合成长长的铁原子链:每个原子都被压缩并沿磁场被拉长,而且首尾相接,形成从表面向外伸出的“须状物”。在表面以下,由于压力太高,单个原子不能存在。它使中子星沿着磁极方向发射束状无线电波(射电波)。中子星自转非常快,能达到每秒几百转。中子星的磁极与两极通常不吻合,所以如果中子星的磁极恰好朝向地球,那么随着自转,中子星发出的射电波束就会象一座旋转的灯塔那样一次次扫过地球,形成射电脉冲。人们又称这样的天体为“脉冲星”。1967年发现了脉冲星,首次证明了中子星的存在。

现已发现1620多颗脉冲星,普遍认为它们就是旋转的中子星。蟹状星云脉冲星和船帆座脉冲星的脉冲周期极短,说明它们不可能是白矮星。据认为,脉冲星是由于它们的旋转和强磁场而产生的一种电动力学现象,就像发电机的情况一样。另有证据表明,某些双星X射线源也包含着中子星,它们似乎是由于压缩从伴星吸积到它们表面上的物质而发出X射线的。中子星据信是超新星爆发形成的,在该过程中,随着核心密度增至10趵15次方/立方厘米,中子压力便会顶住中心核的坍缩。若坍缩中心核的质量超过太阳质量的2倍,则不能形成中子星而可能变成黑洞。 [1]

§ 科学发现

中子星

1967年,天文学家偶然接收到一种奇怪的电波。这种电波每隔1—2秒发射一次,就像人的脉搏跳动一样。人们曾一度把它当成是宇宙人的呼叫,轰动一时。后来,英国科学家休伊什终于弄清了这种奇怪的电波,原来来自一种前所未知的特殊恒星,即脉冲星。这一新发现使休伊什获得了1974年的诺贝尔奖。到目前为止,已发现的脉冲星已超过300个,它们都在银河系内。蟹状星云的中心就有一颗脉冲星。

脉冲星是本世纪60年代四大天文发现之一 (其他三个是:类星体、星际有机分子、宇宙3K微波辐射)。因为它不停地发出无线电脉冲,而且两个脉冲之间的间隔(脉冲周期)十分稳定,准确度可以与原子钟媲美。各种脉冲星的周期不同,长的可达4.3秒,短的只有0.3秒。脉冲星就是快速自转的中子星。中子星很小,一般半径只有10千米,质量却和太阳差不多,质量下限是0.1个太阳的质量,上限是3.2个(据爱因斯坦的广义相对论,可以达到这个水平).是一种密度比白矮星还高的超密度恒星。

中子星的前身一般是一颗质量比太阳大的恒星。它在爆发坍缩过程中产生的巨大压力,使它的物质结构发生巨大的变化。在这种情况下,不仅原子的外壳被压破了,而且连原子核也被压破了。原子核中的质子和中子便被挤出来,质子和电子挤到一起又结合成中子。最后,所有的中子挤在一起,形成了中子星。显然,中子星的密度,即使是由原子核所组成的白矮星也无法和它相比。在中子星上,每立方厘米物质足足有10亿吨重。当恒星收缩为中子星后,自转就会加快,能达到每秒几圈到几十圈。同时,收缩使中子星成为一块极强的“磁铁”,这块“磁铁”在它的某一部分向外发射出电波。当它快速自转时,就像灯塔上的探照灯那样,有规律地不断向地球扫射电波。当发射电波的那部分对着地球时,我们就收到电波;当这部分随着星体的转动而偏转时,我们就收不到电波。所以,我们收到的电波是间歇的。这种现象又称为“灯塔效应”。

中子星的质量极大,一个中子化的火柴盒大小的物质,需要96000个火车头才能拉动!所以中子星的质量是不可忽视的。中子星的能量辐射是太阳的100万倍。按照目前世界上的用电情况.它在一秒钟内辐射的总能量若全部转化为电能,就够我们地球用上几十亿年。中子星并不是恒星的最终状态,它还要进一步演化。由于它温度很高,能量消耗也很快,因此,它的寿命只有几亿年。当它的能量消耗完以后,中子星将变成不发光的黑矮星。

§ 爆发细节

中子星

加拿大理论天体物理研究所的巴尔兰泰因博士和美国国家航空航天局哥达德航天飞行中心的斯特罗梅耶博士通过罗希X射线时变探测器,观测到中子星爆发时表面气体变化的细节。他们的论文发表在即将出版的《天体物理学杂志通讯》上。巴尔兰泰因博士和斯特罗梅耶博士此次观测到的是距地球2.5万光年的4U1820-30中子星爆发时,它的吸积盘内部的变化情况。所谓吸积盘,指的是由于受到巨大引力的吸引,围绕中子星或黑洞旋转的炽热等离子气体。

在重力的吸引下,中子星上面会形成一个10至100米厚的堆积层。堆积层主要由氦构成,在温度及压力的作用下,这些堆积层会发生核聚变。当氦聚变为碳或其它重物质时,会释放出大量能量及强烈的X射线。在中子星上这种爆发通常每天都会发生几次,每次会持续几秒。但此次观测到的是4U1820-30的一次超级爆发,它释放出比正常爆发多几千倍的能量。科学家认为在氦聚变时会积累下以碳为主的核灰尘,而超级爆发是由核灰尘引起的,炭灰尘积累几年后才会引起聚变。

中子星超级爆发时,就像闪光灯在表面闪亮,照到它的吸积盘的内部地区。中子星爆发发出的X射线照射到吸积盘中的铁原子,发出X射线荧光。罗希X射线时变探测器每隔几秒钟就可以观测一次铁原子X射线荧光的光谱,由此可确定铁原子的温度、速率及在中子星周围的位置,通过把这些信息累加起来,就可以知道中子星爆发时吸积盘的变化情况。

由于4U1820-30的这次罕有的爆发释放了巨大的能量,在3小时内释放的能量超过太阳在100年中释放的能量,照亮了它的吸积盘的最内部的区域,使科学家们能观察以前见不到的细节。他们在大约1000秒的时间内,看到了距中子星表面约10英里的气体围绕中子星流动及回复到原有状态的细节。 [2]

§ 研究价值

中子星

一个科学家小组说地球上的黄金、铂金和其他中金属元素可能来自于太阳系诞生前几亿年中子星碰撞的大爆炸。这是令人难以置信的结果。

长期以来普遍认为普通的元素如氧和碳,是在将近死亡的恒星爆炸变成新星时生成的,但是研究学者们感到困惑的是,数据显示这些恒星爆炸不能产生像在地球上这样大量存在的重金属元素。 来自英国莱瑟斯特大学和瑞士巴塞尔大学的这些科学家们相信,答案存在于稀有的中子星对上。

中子星是生成新型的大恒星的超高密度的内核,它们所包含的物质有我们的太阳那么多,但只有大约一座城市那么大。有时会发现两颗中子星互相绕对方沿轨道旋转,这是双星系的遗留物,在我们的银河系中已知有4对。科学家们使用了在英国伦敦以北100英里的莱瑟斯特天体物理流体设备的超级计算机做模拟,如果使它们慢慢旋转着靠近发生爆炸,这样巨大的引力会造成什么结果。

进行一次这样的计算要耗费超级计算机几个星期的时间,而这只是在两个星球的一生中最后几个毫秒中发生的事情。结果显示,当中子星靠近时,巨大的力量将它们劈开,释放出足够的能量,可以将整个宇宙照亮几个毫秒。这个碰撞更可能是产生一个黑洞——空间中吞没光的裂口——并在发生核反应时喷射出灰,把质子射入轻元素的原子核而生成重元素。喷发出的物质和恒星间的气体和灰尘相混合、碰撞,构成了新的一代星体,慢慢使重金属散布在银河系中。

在宇宙中出现这种罕见的现象的几率大约是一百亿年以上,这和我们在已有五十亿年寿命的太阳系中对元素光谱所做的分析结果相符,为这种理论提供了有力的证据。令人惊奇的是所做的模型产生出的元素的数量和宇宙非常非常接近,它部分回答了我们的世界从何而来这个问题。 [3]

随便看

 

百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/9/21 18:54:16