词条 | 香农三大定理 |
释义 | § 内容 具体如下: 一:香农第一定理(可变长无失真信源编码定理) 设信源S的熵【shāng】H(S),无噪离散信道的信道容量为C,于是,信源的输出可以进行这样的编码,使得信道上传输的平均速率为每秒(C/H(S)-a)个信源符号.其中a可以是任意小的正数, 要使传输的平均速率大于(C/H(S))是不可能的。 二:香农第二定理(有噪信道编码定理) 设某信道有r个输入符号,s个输出符号,信道容量为C,当信道的信息传输率R码长N足够长,总可以在输入的集合中(含有r^N个长度为N的码符号序列),找到M (M<=2^(N(C-a))),a为任意小的正数)个码字,分别代表M个等可能性的消息,组成一个码以及相应的译码规则,使信道输出端的最小平均错误译码概率Pmin达到任意小。 三:香农第三定理(保失真度准则下的有失真信源编码定理) 设R(D)为一离散无记忆信源的信息率失真函数,并且选定有限的失真函数,对于任意允许平均失真度D>=0,和任意小的a>0,以及任意足够长的码长N,则一定存在一种信源编码W,其码字个数为M<=EXP{N【R(D)+a】},而编码后码的平均失真度D'(W)<=D+a。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。