词条 | 污泥 |
释义 | § 分类 污泥 根据污泥从污水中分离的过程,可将其分为如下几类: 污泥是指用物理法、化学法、物理化学法和生物法等处理废水时产生的沉淀物、颗粒物和漂浮物。污泥一般指介于液体和固体之间的浓稠物,可以用泵输送,但它很难通过沉降进行固液分离。悬浮物浓度一般在1%~10%,低于此浓度常常称为泥浆。由于污泥的来源及水处理方法不同,产生的污泥性质不一,污泥的种类很多,分类比较复杂,目前一般可以按以下方法分类。 (1)按来源分污泥主要有生活污水污泥,工业废水污泥和给水污泥。 (2)按处理方法和分离过程分污泥可分为以下几类: 初沉污泥(sludgefromprimarysedimentationtank):指污水一级处理过程中产生的沉淀物; 活性污泥(activitedsludge):指活性污泥法处理工艺二沉池产生的沉淀物; 腐殖污泥:指生物膜法(如生物滤池、生物转盘、部分生物接触氧化池等)污水处理工艺中二次沉淀池产生的沉淀物。污泥分类化学污泥:指化学强化一级处理(或三级处理)后产生的污泥。 (3)按污泥的不同产生阶段分: 沉淀污泥(primarysettlingsludge):初次沉淀池中截留的污泥,包括物理沉淀污泥,混凝沉淀污泥,化学沉淀污泥。 生物处理污泥(biologicalsludge):在生物处理过程中,由污水中悬浮状、胶体状或溶解状的有机污染物组成的某种活性物质,称为生物处理污泥。 生污泥(freshsludge):指从沉淀池(初沉池和二沉池)分离出来的沉淀物或悬浮物的总称; 消化污泥(di-gestedsludge):为生污泥经厌氧消化后得到的污泥。 浓缩污泥(concentratesludge):指生污泥经浓缩处理后得到的污泥; 脱水干化污泥(dehydrationsludge):指经脱水干化处理后得到的污泥; 干燥污泥(Dryingsludge):指经干燥处理后得到的污泥。 (4)按污泥的成分和性质分。污泥可分为有机污泥和无机污泥;亲水性污泥和疏水性污泥。 § 处理方法 污泥处理1)污泥浓缩 污泥浓缩后含水率可降为95%~97%,近似糊状。浓缩可以达到污泥的减量化。重力浓缩法用于污泥处理是广泛采用的一种方法,已有50多年历史。机械浓缩方法出现在20世纪30年代的美国,此方法占地面积小,造价低,但运行费用与机械维修费用较高。气浮浓缩于1957年出现在美国。此法固液分离效果较好,目前应用已越来越广泛。 污泥浓缩的方法主要有重力浓缩法、气浮浓缩法、带式重力浓缩法和离心浓缩法,还有微孔浓缩法、隔膜浓缩法和生物浮选浓缩法等。 重力浓缩:利用重力作用的自然沉降分离方式,不需要外加能量,是一种最节能的污泥浓缩方法。重力浓缩只是一种沉降分离工艺,它是通过在沉淀中形成高浓度污泥层达到浓缩污泥的目的,是目前污泥浓缩方法的主体。单独的重力浓缩是在独立的重力浓缩池中完成,工艺简单有效,但停留时间较长时可能产生臭味,而且并非适用于所有的污泥;如果应用于生物除磷剩余污泥浓缩时,会出现磷的大量释放,其上清液需要采用化学法进行除磷处理。重力浓缩法适用于初沉污泥、化学污泥和生物膜污泥。污泥处理气浮浓缩:气浮浓缩与重力浓缩相反,是依靠大量微小气泡附着在污泥颗粒的周围,减小颗粒的比重而强制上浮。因此气浮法对于比重接近于1g/cm3的污泥尤其适用。气浮浓缩法操作简便,运行中同样有一定臭味,动力费用高,对污泥沉降性能(SVI)敏感;适用于剩余污泥产量不大的活性污泥法处理系统,尤其是生物除磷系统的剩余污泥。 带式重力浓缩法:带式重力浓缩法是利用带式重力浓缩机的一种机械浓缩法。由于其具有投资适中,运行费适中,效果好,对各种性能的污泥适应性较强等特点,因此近几年被广泛采用;但实际运行中会受到污泥中高分子的影响,运行时湿度大,因而需要仔细操作。带式重力浓缩法适用于各种生物污泥。 离心浓缩法:离心浓缩法的原理是利用污泥中固、液比重不同而具有的不同的离心力进行浓缩。离心浓缩法的特点是自成系统,效果好,操作简便;但投资较高,动力费用较高,维护复杂;适用于大中型污水处理厂的生物和化学污泥。 2)污泥稳定化污泥处理稳定处理的目的就是降解污泥中的有机物质,进一步减少污泥含水量,杀灭污泥中的细菌、病原体等,消除臭味,这是污泥能否资源化有效利用的关键步骤。污泥稳定化的方法主要有堆肥化、干燥、厌氧消化等。 厌氧消化:在污泥处理工艺中,厌氧消化是较普遍采用的稳定化技术。污泥厌氧消化也称为污泥厌氧生物稳定,它的主要目的是减少原污泥中以碳水化合物、蛋白质、脂肪形式存在的高能量物质,也就是通过降解将高分子物质转变为低分子物质氧化物。厌氧消化是在无氧条件下依靠各种兼性菌和厌氧菌的共同作用,使污泥中有机物分解的厌氧生化反应,是一个极其复杂的过程。一般可分为酸性发酵阶段和碱性发酵阶段,酸性发酵阶段又可以分为水解阶段和产酸阶段,碱性发酵阶段可以分为酸性衰退阶段(产乙酸阶段)和产甲烷阶段。厌氧分解过程中产生大量气体,主要成分为甲烷和二氧化碳以及少量的硫化氢等。但运行管理要求高,消化池需密闭、池容大、池数多。 好氧消化:好氧消化污泥出现于20世纪50年代,与活性污泥法极为相似。当外来养料被消耗完以后,微生物靠消耗自己的机体来产生能量以维持生命活动。这就是微生物的内源代谢阶段。细胞组织在好氧条件下的内源代谢产物为CO2、NH3、H2O,而NH3会在有氧条件下进一步氧化为硝酸盐。污泥好氧消化的反应可以用下面的方程式表达: C6H7NO2+7O2→5CO2+NO3-+3H2O+H+ 上式中C6H7NO2为细胞组织的元素组成。 此法降解程度高,无臭稳定,易脱水,肥份高,运行管理简单,基建费用低。但运行费用高,消化污泥量少,降解程度随温度波动大。 好氧堆肥:堆肥技术探讨始于1920年,堆肥系统可分为三类:条形堆肥系统、静态好氧堆肥系统和装置式堆肥系统。城市污水处理厂的污泥中含有大量促进植物和农作物生长的氮、磷、钾等营养成分,肥效较好,经过堆肥处理可以达到稳定化、无害化及资源化的目的。堆肥是一个由嗜温菌、嗜热菌对有机物进行好氧分解的稳定过程,其特点是自身可以产生一定的热量,并且高温持续时间长,不需外加热源,即可达到无害化。堆肥的一般工艺流程主要分为前处理,一次发酵,二次发酵和后处理四个过程。经过堆肥化处理后,污泥的性状改善,含水率降低(小于40%),成为疏松、分散、细粒状,可杀灭病原菌和寄生虫(卵),便于贮藏、运输和使用。 石灰稳定技术石灰稳定技术始于20世纪50年代,在投加石灰的条件下,保持一定pH值及一定时间,可以杀灭传染病菌,并防腐与抑制臭气的产生。该技术操作简单、成本较低,处理后较容易脱水。污泥最终处置可采用农用或者卫生填埋。污泥处理污泥湿式氧化污泥湿式氧化后,难生物降解有机物可被氧化,灭菌率高,反应在密闭系统内无臭,反应时间短,残渣量少,可以达到减量化、无害化、稳定化。但此方法设备昂贵,运行费用高,需要气体脱臭装置。 3)污泥脱水与干化 污泥脱水是整个污泥处理工艺的一个重要的环节,其目的是使固体富集,减少污泥体积,为污泥的最终处置创造条件。为使污泥液相和固相分离,必须克服它们之间的结合力,所以污泥脱水所遇到的主要问题是能量问题。针对结合力的不同形式,有目的采用不同的外界措施可以取得不同的脱水效果。污泥脱水与干化包括自然脱水、机械脱水和热处理干化。 污泥经浓缩、消化后,尚有95%~97%含水率,且易腐败发臭,需对污泥作干化与脱水处理。常用脱水方法有自然干燥和机械脱水两种。利用芦苇等沼生植物也可以进行较好的脱水。 4)干燥 为了进一步降低脱水后污泥的含水率(75%),采用干燥工艺。经干燥后含水率可降至约20%左右。干燥工艺除了最简单的日晒外,常用的是热干燥技术。污泥热干燥开始于本世纪初的英国,此方法可以完全杀灭病原菌,使污泥处于稳定化状态。但干燥过程产生的大量的废气净化费用问题、运行费用,都是使用干燥工艺要考虑的问题。 § 新技术 污泥处理技术近年来,随着污泥农用标准(如合成有机物和重金属含量)的日益严格,许多国家,如德国、意大利、丹麦等污泥农用的比例不断降低,而污泥填埋的比例增加。但也有一些国家,如美国、英国和日本等污泥农用的比例增加,填埋的比例减少。近十年来,世界各国污泥处理涌现了许多新技术,最集中的有以下几个方面。 1、污泥熔化 为了减少污泥体积和利用其中的重金属黏结作用,日本曾开展污泥熔化技术研究,但还不十分深入。污泥熔化处理也是污泥热化学处理方法的一种。污泥熔化技术是把污泥加热至1300~1500℃,使污泥中有机物燃烧,其残留物质可用来制作玻璃、钢铁、建筑材料等。 2、两相消化 目前,新型的污水污泥处理工艺如高温酸化-中温甲烷化两相厌氧消化等不断出现,并逐步被应用。边兴玉等采用污水污泥两相厌氧消化工艺,将产酸相和产甲烷相分别置于各自的反应器中,形成各自的相对优势微生物种群,提高了整个消化过程的处理效果和稳定性。VSS(挥发性悬浮颗粒物)去除率比中温传统工艺提高50%以上,比高温传统工艺提高35%左右。高温酸化0.5d后,中温甲烷化8•5d,可达到中温传统法20d的处理效果,节省了时间。另外,灭菌效果优于中温传统法,产甲烷反应器保持较高的缓冲能力,对挥发性酸积累的抵御和耐冲击负荷的能力强。 3、污泥制油 污泥制油是把含水率为65%的干泥在隔绝空气下,加热升温450℃,在催化剂作用下把污泥中有机物转化为碳氢化合物,最大转化率取决于污泥组成和催化剂的种类,正常200~300L(油)/t(干泥)的产率,其性质与柴油相似。加拿大正在进行中试试验,澳大利亚Perth也正在建造利用热化学方法将污泥制油的工厂。 4、污泥湿式氧化(wetairoxidation简称WAO)污泥处理技术湿式氧化法是在高温(125℃~320℃)和高压(0.5~20MPa)条件下,以空气中的氧作为氧化剂,在液相中将有机物分解为二氧化碳、水等无机物或小分子有机物的化学过程。由于剩余污泥在物质结构上与高浓度有机废水十分相似,因此这种方法也可用于处理剩余污泥。剩余污泥的湿式氧化法处理是湿式氧化法最成功的应用领域,目前有50%以上的湿式氧化装置应用于剩余污泥的处理。 5、臭氧剩余污泥减量化 这一工艺是由日本的H•Yasui等学者提出的。此工艺中,剩余污泥的消化与污水处理在同一个曝气池中同时进行。工艺分成两个过程,一个是臭氧氧化过程,另一个是生物降解过程。 从二沉池中沉下来的污泥,一部分直接回流到曝气池中,另一部分则是先进行臭氧处理然后再回流到曝气池。污泥经过臭氧处理后,能够提高其生物降解性,在曝气池中与污水同时进行生物处理。而且在经臭氧处理后,将有一部分污泥(1/3)被无机化。因此,只要操作适当,可以使污水处理过程中净增污泥量与无机化污泥量相等,从而可以达到无剩余污泥的目的。 6、超声波处理剩余污泥 超声波通常是指频率为的20kHz~10MHz的声波。当其声强增加到一定的数量时,会对其传播中的媒质产生影响,使媒质的状态、组成、功能和结构等发生变化,通称为超声效应。超声波与媒质作用的机制可分为热机制、机械机制和空化机制,超声波主要通过空化机制实现对剩余污泥的处理。 7、高速生物反应器 高速生物反应器技术是在利用土壤处理污泥的基础上发展起来的。利用土壤中的微生物处理污泥,由于系统是开放的,因而会受到气温和土壤湿度的影响,使土壤利用的时间和区域受到一定的限制。 美国SWEC公司在80年代开始研制开发高速生物反应器,该技术将污泥的脱水、消化和干化相结合,将土壤处理的整个过程放置在室内一个封闭的循环系统中进行。Texaco经过近20年的研究开发,使高速生物反应器技术成熟并得以推广。整个操作系统的核心部分是生物反应器,它由二个区域组成:上半部分是污泥与土壤相混合的区域,使污泥负荷达到均一化,污泥的有机部分在这一区域中被生物降解;下半部分是气、液分离区,使液体不滞留于土壤中,以增加氧的传递率。高负荷率的污泥通过该系统的处理,污泥中的有机组分将降解70%~80%,悬浮固体浓度去除率达到45%~60%。从沉淀池排出浓度为5000~30000mg/L的污泥都可以直接进入该系统中,而不需要任何的预处理。相比于其它生物处理技术,该系统所需能量较少,可以连续运行,并能保持最佳温度以利于微生物的降解,特别适合于受自然条件限制或土壤湿度大的污泥处理过程中。 § 相关政策 污泥处理政策根据现行的《城市污水处理及污染防治技术政策》: 污泥处理 1、城市污水处理产生的污泥,应采用厌氧、好氧和堆肥等方法进行稳定化处理。也可采用卫生填埋方法予以妥善处置。 2、日处理能力在10万立方米以上的污水二级处理设施产生的污泥,宜采取厌氧消化工艺进行处理,产生的沼气应综合利用。日处理能力在10万立方米以下的污水处理设施产生的污泥,可进行堆肥处理和综合利用。采用延时曝气的氧化沟法,SBR法等技术的污水处理设施,污泥需达到稳定化。采用物化一级强化处理的污水处理设施,产生的污泥须进行妥善的处理和处置。 3、经过处理后的污泥,达到稳定和无害化要求的,可农田利用;不能农田利用的污泥,应按有关标准和要求进行卫生填埋处置。 § 相关词条 处理技术设备 利用政策危害 § 相关连接 1.http://www.h2o-china.com/report/wuni/index.asp 2.http://www.chinaep.net/feiwu/wuni/wuni-16.htm 3.http://www.iwatertech.com/tech/sludge-reduce/3655/ |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。