词条 | 洛伦兹 |
释义 | § 物理学家 生平简介 洛伦兹 Hendrik Antoon Lorentz1853年7月18日 --- 1928年2月4日 洛伦兹(Hendrik Antoon Lorentz,1853年7月18日 --- 1928年2月4日.), 是世界著名的物理学家、数学家.1853年7月18日生于荷兰阿纳姆。并在该地上小学和中学,成绩优异,少年时就对物理学感兴趣,同时还广泛地阅读历史和小说,并且熟练地掌握多门外语。他虽然生长在基督教的环境里,但却是一个自由思想家。 1870年洛伦兹考入莱顿大学,学习数学、物理和天文。1875年获博士学位。1877年,莱顿大学聘请他为理论物理学教授,这个职位最早是为J.D.范瓦耳斯设的,其学术地位很高,而这时洛伦兹年仅23岁。在莱顿大学任教35年,他对物理学的贡献都是在这期间作出的。 1912年洛伦兹辞去莱顿大学教授职务,到哈勒姆担任一个博物馆的顾问,同时兼任莱顿大学的名誉教授,每星期一早晨到莱顿大学就物理学当前的一些问题作演讲。后来他还在荷兰政府中任职,1919~1926年在教育部门工作,其间1921年起担任高等教育部部长。 1911~1927年担任索尔维物理学会议的固定主席。在国际物理学界的各种集会上,他经常是一位很受欢迎的主持人。1923年国际科学协作联盟委员会主席。他还是世界上许多科学院的外国院士和科学学会的外国会员。 洛伦兹于1928年2月4日在荷兰的哈勃姆去世,终年75岁。为了悼念这位荷兰近代文化的巨人,举行葬礼的那天,荷兰全国的电信、电话中止三分钟。世界各地科学界的著名人物参加了葬礼。爱因斯坦在洛伦兹墓前致词说:洛伦兹的成就“对我产生了最伟大的影响”,他是“我们时代最伟大、最高尚的人”。 科学成就 1.创立电子论1902年49歳時的洛伦兹照片。认为一切物质分子都含有电子,阴极射线的粒子就是电子。把以太与物质的相互作用归结为以太与电子的相互作用。这一理论成功地解释了塞曼效应,与塞曼一起获1902年诺贝尔物理学奖。 洛伦兹是经典电子论的创立者.他认为电具有“原子性”,电的本身是由微小的实体组成的.后来这些微小实体被称为电子.洛伦兹以电子概念为基础来解释物质的电性质.从电子论推导出运动电荷在磁场中要受到力的作用,即洛伦兹力.他把物体的发光解释为原子内部电子的振动产生的.这样当光源放在磁场中时,光源的原子内电子的振动将发生改变,使电子的振动频率增大或减小,导致光谱线的增宽或分裂.1896年10月,洛伦兹的学生塞曼发现,在强磁场中钠光谱的D线有明显的增宽,即产生塞曼效应,证实了洛伦兹的预言.塞曼和洛伦兹共同获得1902年诺贝尔物理学奖. 1904年,洛伦兹证明,当把麦克斯韦的电磁场方程组用伽利略变换从一个参考系变换到另一个参考系时,真空中的光速将不是一个不变的量,从而导致对不同惯性系的观察者来说,麦克斯韦方程及各种电磁效应可能是不同的.为了解决这个问题,洛伦兹提出了另一种变换公式,即洛伦兹变换。后来,爱因斯坦把洛伦兹变换用于力学关系式,创立了狭义相对论. 荷兰理论物理学家洛伦兹由于提出“电子论”而获得1942年诺贝尔物理学奖。 2.提出洛伦兹变换公式 1892年他研究过地球穿过静止以太所产生的效应,为了说明迈克孙-莫雷实验的结果,他独立地提出了长度收缩的假说,认为相对以太运动的物体,其运动方向上的长度缩短了。1895年,他发表了长度收缩的准确公式,即在运动方向上,长度收缩因子为。1899年,他在发表的论文里,计论了惯性系之间坐标和时间的变换问题,并得出电子与速度有关的结论。1904年,他发表了著名的变换公式(J.-H.庞加莱首先称之为洛伦兹变换)和质量与速度的关系式,并指出光速是物体相对于以太运动速度的极限。 1875年前,光的电磁理论与物质分子理论相结合的统一设想,还没有被人明确提出。此后,洛伦兹对这一问题进行深入研究,写出了题为《光的反射与折射理论》论文,对光的旧波动理论与光的新电磁理论作了综合性评述,最后明确提出了这一统一设想,不仅使麦克斯韦的电磁理论有了更加坚实的物理基础,而且据此创立了物质的电子论。随后他又根据电子论,确立了电子在磁场中所受的力即“洛伦兹力”的概念。与此同时,他还与其同胞塞曼一起,发现并验证了塞曼效应。塞曼效应是一种解释置于磁场中的光源发射的各种谱线,受磁场影响分裂成几条,各分谱线之间间隔的大小与磁场强度成正比的理论。塞曼最先发现这一现象并对其进行了研究,但他通过研究在理论上虽然可以正确解释这一现象,却在实验中遇到了难题。洛伦兹对此进行反复实验,终于找到了问题的症结所在,用实验证实了塞曼理论的正确,使塞曼效应在理论和实验上都站住了脚,成了物理学中的一个经典定律。 3.出色的物理教育家 洛伦兹还是一位教育家,他在莱顿大学从事普通物理和理论物理教学多年,写过微积分和普通物理等教科书。在哈勒姆他曾致力于通俗物理讲演。他一生中花了很大一部分时间和精力审查别人的理论并给予帮助。他为人热诚、谦虚,受到爱因斯坦、薛定谔和其他青年一代理论物理学家们的尊敬,他们多次到莱顿大学向他请教,爱因斯坦曾说过,他一生中受洛伦兹的影响最大。 趣闻轶事 洛伦兹與愛因斯坦的合照 在物理学家中,洛伦兹是最富有国际性的。在他事业的最初20年中,他的国际性工作仅限于著作。后来,他开始离开莱顿书房和教室,广泛地与国外科学家进行个人接触。他的电子理论使他在物理学界获得领导地位。1898年,洛伦兹接受玻尔兹曼的邀请,为德国的自然科学与医学学会的迪塞尔多夫会议物理组做演讲。1900年在巴黎,为国际物理代表会(世界性物理学家集会)做演讲。洛伦兹在物理方面最重要的国际性活动是担任物理学的索尔维会议的定期主席(1911—1927年),他在临终前还主持了最后一次会议。洛伦兹在这些国际性的集会中主持会议并成为公认的领袖。大家对他渊博的学问、高明的技术、善于总结最复杂的争论以及无比精炼的语方都非常佩服。第一次大战后,洛伦兹的国际主义活动带有若干政治色彩。1909年至1921年,他担任荷兰皇家科学与文学研究院物理组的主任时,以自己的影响来说服人们参加战后盟国创立的国际性科学组织。1923年,他成为国联文化协作国际委员会的七个委员之一,并继承伯格森(H.Bergson)担任主席。 洛伦兹在物理学上最重要的贡献是他的电子论。早在他作学位论文之前,由于读过菲涅耳文集而深受其影响;后来受到H.von亥姆霍兹的启发,他用J.C.麦克斯韦的电磁理论来处理光在电介质交界面上的反射和折射问题作为他的博士论文,在论文的末尾,他提到把光磁理论与物质的分子理论结合起来的前景,这就是他后来创立电子论的根源。1878年,他发表了光与物质相互作用的论文,把以太与普通的物质区别开来,认为以太是静止的,无所不在,而普通物质的分子则都含有带电的谐振子;在这个基础上,他导出了分子折射率的公式(即洛伦兹-洛伦茨公式)1892年,他开始发表电子论的文章,他认为一切物质的分子都含有电子,阴极射线的粒子就是电子,电子是很小的有质量的刚球,电子对于以太是完全透明的,以太与物质的相互作用归结为以太与物质中的电子的相互作用。这在个基础上,1895年他提出了著名的洛伦兹力公式。1896年,P.塞曼发现放在磁场中的光源,其光谱线发生分裂(塞曼效应)。洛伦兹立即用他的电子论对这一现象作了定量的解释。由于这一贡献,他和塞曼共同获得1902年的诺贝尔物理学奖。 洛伦兹变换 Lorentz Transformation 洛伦兹力演示器实验原理 狭义相对论中关于不同惯性系之间物理事件时空坐标变换的基本关系式。设两个惯性系为S系和 S′ 系,它们相应的笛卡尔坐标轴彼此平行,S′系相对于S系沿x方向运动,速度为v,且当t=t′=0时,S′系与S系的坐标原点重合,则事件在这两个惯性系的时空坐标之间的洛伦兹变换为x′=γ(x-vt),y′=y,z′=z,t′=γ(t-vx/c2),式中γ=(1-v2/c2)-1/2;c为真空中的光速。不同惯性系中的物理定律必须在洛伦兹变换下保持形式不变。 在相对论以前,H.A.洛伦兹从存在绝对静止以太的观念出发,考虑物体运动发生收缩的物质过程得出洛伦兹变换。在洛伦兹理论中,变换所引入的量仅仅看作是数学上的辅助手段,并不包含相对论的时空观。爱因斯坦与洛伦兹不同,以观察到的事实为依据,立足于两条基本原理:相对性原理和光速不变原理,着眼于修改运动、时间、空间等基本概念,重新导出洛伦兹变换,并赋予洛伦兹变换崭新的物理内容。在狭义相对论中,洛伦兹变换是最基本的关系式,狭义相对论的运动学结论和时空性质,如同时性的相对性、长度收缩、时间延缓、速度变换公式、相对论多普勒效应等都可以从洛伦兹变换中直接得出。 卓越的成就 Hendrik Antoon Lorentz 洛伦兹 亨德利克·洛伦兹(Hendrik·Antoon·Lorentz,1853~1928),1853年7月18日生于阿纳姆一个普通的苗圃主家庭,并在该地上小学和中学。幼年洛伦兹的成绩优异,少年时就对物理学感兴趣,同时还广泛地阅读了大量历史和小说。因此,他虽然生长在基督教的环境里,但却是一个自由思想家。洛伦兹在语言方面有很高的天赋。他能非常迅速地掌握外语,能根据上下文来推断其语法。对于一个终身居住在荷兰的几个闭塞的城市而希望与世界对话的人来说,这种天赋不啻是一笔巨大的财富。1870年,洛伦兹考入莱顿大学,主要方向是数学和物理学。 1873年,洛伦兹以优异的成绩通过了博士考试,两年后获得博士学位。洛伦兹的学位论文是物理光学方面的,题目是“关于光的折射和反射的理论”。这个课题菲涅耳已经做过,但洛伦兹运用麦克斯韦的电磁场理论重新进行了处理。这项研究几乎一下子就使洛伦兹确立了他在本国的学术地位。3年后,莱顿大学聘他为教授,主持该校新设置的理论物理教席。这个设置不仅在荷兰,而且在整个欧洲也是最早的。洛伦兹接受了这个职位,从而确定了他的理论物理学的职业生涯。 洛伦兹是经典电子论的开创者。1892年,洛伦兹发表了经典电子论的第一篇论文。在这篇论文中,洛伦兹明确地把连续的场和包含分立电子的物质完全分开,同时又为麦克斯韦方程组追加了一个洛伦兹力方程。于是,连续的场和分立的电子,就由这个洛伦兹力来联系。在此基础上,洛伦兹把当时所得到的电磁光学的各种结果,重新整理加以格式化,确立了经典电子论的基础。许多从他那里学习电动力学的理论物理学家认为,这是洛伦兹一生中最伟大的贡献之一。 当新物理学开始崛起的时候,洛伦兹也推导过黑体辐射能量分布公式。他只能用自己的理论计算能谱的长波极限。他了解普朗克1900年的黑体辐射量子理论包含整个光谱,也了解普朗克的量子假设与他自己的电子论基础完全不同。但1908年洛伦兹以有利于普朗克量子论的口吻说,普朗克理论是唯一能解释黑体辐射整个光谱的。洛伦兹是最早能这样指出并强调量子假说和电子论假说之间存在深刻对立的人之一。 1896年,洛伦兹用电子论成功地解释了由莱顿大学的塞曼新近发现的原子光谱磁致分裂现象。洛伦兹断定该现象是由原子中负电子的振动引起的。他从理论上导出的负电子的荷质比,与汤姆逊翌年从阴极射线实验得到的结果相一致。由于塞曼效应的发现和解释,洛伦兹和塞曼分享了1902年度的诺贝尔奖。 除了诺贝尔物理学奖,洛伦兹还获得过英国皇家学会的伦福特和科普利奖章,并且接受了巴黎大学和剑桥大学名誉博士、德国物理学会和英国皇家学会国外会员的光荣称号。 人物评价 海纳百川的大师风范 作为現代第一代理论物理学家,洛伦兹的显著特点之一是对于一套套的新思想表现出不同寻常的开放态度。洛伦兹对理论物理的影响不仅通过他的著作,而且也通过他同从世界各地慕名而来的青年物理学家的个人交往。爱因斯坦、薛定谔和其他理论工作者经常到莱顿去拜访他,听取他对于他们一些最新思想的意见。但他从不干扰别人的思想,他和他们的关系是靠和善而平淡的基本个性来维持的。 不过,洛伦兹的开放态度不完全是出于他的性格。从他在莱顿大学的就职演说中可以了解到,这也是洛伦兹作为理论物理学家的专业见解。洛伦兹说过,物理学研究的目的就在于寻求简单的、可以说明所有现象的基本原理。但他告诫不要过分看重对基本原理的内心联想,或者希望原理本身能够进一步发挥。他认为,由于人们不能深入地洞察事物的本性,因而把任何已有的认识途径作为唯一可靠的途径加以提倡是轻率的。按照洛伦兹的观点,各种基本的理论途径应该同时由不同的研究者加以探索。 洛伦兹的电子论把经典物理学推上了它所能达到的最后高度。洛伦兹本人几乎成了19世纪末、20世纪初物理学界的统帅。如果洛伦兹不那么具有开放精神,这种成就本来可能使他过早地退出历史舞台。当世纪之交的物理学革命打破了古典物理学时,洛伦兹说过,他感到遗憾的是,他为什么不在旧的基础崩溃之前死去。但是洛伦兹的个性是“超个人”的,他对过去价值的惋惜很快就由愉快地接受新事物所取代了。 由于洛伦兹在理论物理方面享有很高的威望、通晓多种语言并善于驾驭最为紊乱的辩论,所以他生前每次都被邀请参加物理学界最重要的国际会议,而且经常担任大会的主席。1911年洛伦兹主持了第一届索尔维会议。这次会议使量子概念从四面八方突破了德语世界的边境,成为一个在法国和英国同样使人感兴趣的论题。 第一次世界大战后,洛伦兹的开放精神在他的世界主义立场中也得到了充分的体现。为恢复科学国际主义,洛伦兹作了持续的努力。1923年洛伦兹被选为国际文化协作委员会委员,并继柏格森之后担任了该委员会主席。 这种本质上的伟大开放精神,使洛伦兹不仅在学术上富有成就,而且在人品上也赢得了同时代人的敬重。1928年2月4日,洛伦兹去世,终年75岁。在他下葬那天,荷兰的电报、电话服务暂停3分钟以示哀悼。出席葬礼的有荷兰王室、政府以及来自世界各国科学院的代表。英国皇家学会会长、著名的实验物理学家卢瑟福,普鲁士科学院代表、第二代职业理论物理学家的领导人爱因斯坦都在他的墓旁致了悼词。 § 混沌理论之父 爱德华·诺顿·洛伦茨(英语:Edward Norton Lorenz,1917年5月23日-2008年4月16日),美国数学与气象学家。混沌理论之父,蝴蝶效应的发现者。1963年获混沌之父爱德华·诺顿·罗伦兹 美国气象学会迈辛格奖. “混沌理论”之父爱德华.罗伦兹(Edward Lorenz),2008年4月16日在其位于美国麻省的家中逝世,终年九十岁。 罗伦兹毕业于达特茅斯学院、哈佛大学和麻省理工学院,生前在麻省理工任教。他于上世纪六十年代,提出了著名的“混沌理论(Chaos Theory)”,指小小的变化可产生巨大影响,例如巴西一只蝴蝶煽动翅膀这个看似微不足道的现象,可改变大气运动的方式,引发美国得州爆出龙卷风。此现象被称为“蝴蝶效应(Butterfly Effect)”。 罗伦兹所提出的“决定性混沌(Deterministic Chaos)”被指是自牛顿以来另一引人注目的人类自然观的“进化论”,他因此于一九九一年获颁基础科学京都奖。罗伦兹认为,人类本身都是非线性的:与传统的想法相反,健康人的脑电图和心脏跳动并不是规则的,而是混沌的,混沌正是生命力的表现,混沌系统对外界的刺激反应,比非混沌系统快得多。 “混沌理论” “混沌理论”是在数学和物理学中,研究非线性系统在一定条件下表现出的现象的理论。一九六三年罗伦兹提出了该想法,以图解释非线性系统具有的多样性和多尺度性。“混沌理论”最大的贡献是用简单的模型来推出明确的非周期性结果。 该理论认为在混沌系统中,初始条件十分微小的变化经过不断放大,对其未来状态会造成极其巨大的差别。例如马蹄铁上的一个钉子是否会丢失,本是初始条件十分微小的变化,但其“长期”效应却是一个帝国存与亡的根本差别。这就是所谓“蝴蝶效应”。 “蝴蝶效应” “蝴蝶效应”是指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期而巨大的连锁反应。这是一种混沌现象,“一只蝴蝶在巴西轻拍翅膀,会使更多蝴蝶跟著一起振翅。最后将有数千只的蝴蝶都跟著那只蝴蝶一同挥动翅膀,其所产生的飓风可以导致一个月后在美国得州发生一场龙卷风。 ” 在《混沌学传奇》等书中皆有这样的描述:“一九六一年冬季的一天,罗伦兹在计算机上进行关于天气预报的计算。为了考察一个很长的序列,他走了一条捷径,没有令计算机从头运行,而是从中途开始.他把上次的输出直接打入作为计算的初值,然后他穿过大厅下楼,去喝咖啡。一小时后他回来时,发生了出乎意料的事,他发现天气变化同上一次的模式迅速偏离,在短时间内,相似性完全消失了。进一步的计算表明,输入的细微差异可能很快成为输出的巨大差别。 罗伦兹最初使用的是“海鸥效应”来形容这种现象,但在一九七九年于华盛顿的美国科学促进会的演讲上却问道:“一只蝴蝶在巴西搧动翅膀会在得克萨斯引起龙卷风吗?”“蝴蝶效应”因此得名。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。