请输入您要查询的百科知识:

 

词条 孙子定理
释义

§ 孙子定理

中国古代求解一次同余式组(见同余)的方法。是数论中一个重要定理。又称中国剩余定理。

§ 历史记载

公元前后的《孙子算经》中有“物不知数”问题:“今有物不知其数,三三数之余二 ,五五数之余三 ,七七数之余二,问物几何?”答为“23”。也就是求同余式组x≡2 (mod3),x≡3 (mod5 ),x≡2 (mod7)(式中a≡b (modm)表示m整除a-b )的正整数解。明朝程大位用歌谣给出了该题的解法:“三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。”即解为x≡2×7+3×21+2×15≡233≡23(mod105)。此定理的一般形式是设m = m1 ,… ,mk 为两两互素的正整数,m=m1,…mk ,m=miMi,i=1,2,… ,k 。则同余式组x≡b1(modm1),…,x≡bk(modmk)的解为x≡M'1M1b1+…+M'kMkbk (modm)。式中M'iMi≡1 (modmi),i=1,2,…,k 。直至18世纪 C.F.高斯才给出这一定理。孙子定理对近代数学如环论,赋值论都有重要影响。

随便看

 

百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/19 8:41:44