词条 | 地壳运动 |
释义 | § 基本简介 地壳运动由内营力引起地壳结构改变、地壳内部物质变位的构造运动叫地壳运动。地球表层相对于地球本体的运动。通常所说的地壳运动,实际上是指岩石圈相对于软流圈以下的地球内部的运动。岩石圈下面有一层容易发生塑性变形的较软的地层,同硬壳状表层不相同,这就是软流圈。软流圈之上的硬壳状表层包括地壳和上地幔顶部。地壳同上地幔顶部紧密结合形成岩石圈,可以在软流圈之上运动。在地球的内力和外力作用下地壳经常所处的运动状态。地球表面上存在着各种地壳运动的遗迹,如断层、褶皱、高山、盆地、火山、岛弧、洋脊、海沟等;同时,地壳还在不断的运动中,如大陆漂移、地面上升和沉降以及地震都是这种运动的反映。 地壳运动与地球内部物质的运动紧密相联,它们可以导致地球重力场和地磁场的改变,因而研究地壳运动将可提供地球内部组成、结构、状态以及演化历史的种种信息。测量地壳运动的形变速率,对于估计工程建筑的稳定性、探讨地震地壳运动 预测等都是很重要的手段,对于反演地应力场也是一个重要依据。对缓慢的地壳运动,可根据地质学(地层学、古生物学、构造地质学等)、地貌学和古地磁学的考察,参考古天文学、古气候学的资料,进行综合分析判定。例如,大陆漂移学说是从古生物学、古气候学找到迹象,又通过古磁极的迁移得以确立的。现在根据同位素年龄的测定和岩石磁化反向的分析,可以进一步认识地壳运动的演化。对于现代地壳运动,一般采用重复大地测量的方法,如用重复水准测量来研究垂直运动;用三角测量或三边测量的复测来研究水平运动;用安放在活动断层上的蠕变计、倾斜仪和伸长仪等做定点连续观测来监视断层的运动。20世纪70年代后期,进而利用空间测量技术(激光测月、人造卫星激光测距和甚长基线干涉测量等)监测不同板块上相距上千公里的两点间的相对位移(精度可达2~3厘米),用以测定板块之间的运动。除此以外,还可以利用海岸线的变迁,验潮站关于海水涨落的记录等,推断现代地面的升降运动。 § 相关分类 地壳运动按运动方向可分为水平运动和垂直运动。水平运动指组成地壳的岩层,沿平行于地球表面方向的运动。也称造山运动或褶皱运动。该种运动常常可以形成巨大的褶皱山系,以及巨形凹陷、岛弧、海沟等。垂直运动,又称升降运动、造陆运动,它使岩层表现为隆起和相邻区的下降,可形成高原、断块山及拗陷、盆地和平原,还可引起海侵和海退,使海陆变迁。地壳运动控制着地球表面的海陆分布,影响各种地质作用的发生和发展,形成各种构造形态,改变岩层的原始状态,所以有人也把地壳运动称构造运动。按运动规律来讲,地壳运动以水平运动为主,有些升降运动是水平运动派生出来的一种现象。 地壳运动按运动的速度可分为两类:1、长期缓慢的构造运动。例如大陆和海洋的形成,古大陆的分裂和漂移,形成山脉和盆地的造山运动,以及地球自转速率和地球扁率的长期变化等,它们经历的时间尺度以百万年计。另如冰期消失、地面冰块融化引起的地面升降,也属以万年计的缓慢运动。2、较快速的运动。这种运动以年或小时为计算单位,如地极的张德勒摆动,能引起地壳的微小变形;日、月引潮力不但造成海水涨落,也使固体地球部分形成固体潮,一昼夜地面最大可有几十厘米的起伏;较大的地震可引起地球自由振荡,它既有径向的振动,也有切向的扭转振动。 § 历史记载 地壳运动地球表层的大规模移动传统地质学最早发现了地球表层的垂直升降运动,证据是在高山上发现海相的沉积岩,并且有海中特有的贝类化石。这表明某些大陆地区的地壳在过去的地质年代中曾经是海洋。地质学中有所谓海进和海退之说,表明局部地壳是有升降变化的。但是传统地质学否认地球表层曾有过大尺度的水平运动。20世纪60年代以后总结了一系列的地学研究成果,证明地球表层在地球的历史中曾经有过大规模的水平位移,各大陆的相对位置曾有过显着的变化。最主要的证据是:1、全球地震带勾画出6大板块的轮廓,证明地球表层的岩石圈不是完整的一块。2、古地磁学的研究表明,由各大陆岩石磁性所得到的古地磁极位置不相重合,而根据各大陆不同地质年代的岩石磁性所绘制的极移曲线,在近代趋向重合于今地磁极位置。3、大洋中脊两侧的磁异常条带,表明海底地壳在不断从中脊向两侧扩张,各板块所负载的大陆岩石圈随之发生水平漂移。 地球表层的垂直运动由于6大板块和其他小板块的互相镶嵌式拼合,板块的水平向移动必然在板块边界和板块内部产生次生的竖直向运动:1、板块消减带上海洋板块向地幔中以一定倾角下沉;2、相邻的大陆板块边缘受消减运动的影响有牵连地下沉,地震时产生回跳;3、大陆内部由于横向的推挤压力产生地壳的抬升或岩石圈的加厚,地质上产生岩层的褶皱,形成山脉和河谷。另外,由于地幔物质的上涌在某些地区的岩石圈中可能产生拉伸的张应力,形成张性的裂谷或断陷盆地。从地壳均衡的方面说,地球表层的竖直向运动从根本上还受着地球重力的制约。 § 形成原因 地壳运动地壳运动使沉积岩层发生弯曲,产生裂缝、断裂,并留下永久形迹,这样就形成了地质构造。所谓地质构造就是地壳运动引起的岩层变形和变位的形迹(结果)。地壳运动是形成地质构造的原因,地质构造则是地壳运动的结果。我们知道地壳内部是一个炙热的流动的状态。而地壳的结构不是平均的。有的地方坚固,有的地方薄弱。流动在地壳中的物质还有巨大的压力,当他们在地壳中遇到相对薄弱的地方,由于高温高压的岩浆就会从这些薄弱的地方涌出,涌出后冷却形成火成岩。这些新的岩石不断的积压周围的岩石和地层,不断的把他们象两边推开。这样就造成了地壳的缓慢运动。比较典型的有大洋中脊,以及印度板块和亚欧板块的碰撞。 § 证明过程 地壳运动自地球诞生以来,地壳就在不停运动,既有水平运动,也有垂直运动。地壳运动造就了地表千变万化的地貌形态,主宰着海陆的变迁。人们可用大地测量的方法证明地壳运动。例如,人们测出格林尼治和华盛顿两地距离每年缩短0.7米,像这样发展下去,1亿年之后,大西洋就会消失,欧亚大陆就会和美洲大陆相遇。化石也是地壳运动的证据。在喜马拉雅山的岩层里,找到了许多古海洋生物化石,如三叶虫、笔石、珊瑚等,说明这里曾经是汪洋大海。文化遗迹也是很好的证据。意大利波舍里城一座古庙的大理石柱离地面4~7米处,有海生贝壳动物蛀蚀的痕迹,可见该庙自建成以后曾一度下沉被海水淹没,以后又随陆地上升露出了水面。另外,火山、地震、地貌及古地磁研究等都能提供大量的地壳运动的证据。地壳运动引起的地壳变形变位,常常被保留在地壳岩层中,成为地壳运动的证据。在山区,我们经常可以看到裸露地表的岩层,它们有的是倾斜弯曲的,有的是断裂错开的,这些都是地壳运动的“足迹”,称为地质构造。形成的地貌,称为构造地貌。地球在地质时期的地壳运动,虽然不能通过直接测量得知,但在地壳中却留下了形迹。在山区岩石裸露的地方,沉积岩层常常是倾斜、弯曲的,甚至断裂错开了,这都是岩层受力发生变形的结果。在中国山东荣城沿海一带,昔日的海滩现已高出海面20~40米。福建漳州、厦门一带,昔日的海滩也已高出海面20米左右,说明这些地方的地壳在上升。我国渤海海底发现了约达7千米的海河古河道,这表明渤海及其沿岸地区为现代下降速度较大的地区。再如,美丽的雨花石产于南京雨花台,这些夹有美丽花纹的光滑的卵石,是古河床的天然遗物。雨花台大量堆积着卵石,说明这里过去曾有河流,以后地壳上升,河道废弃,才成了如今比长江水面高出很多的雨花台砾石。 (一)褶皱当岩层受到地壳运动产生的强大挤压作用时,便会发生弯曲变形,这叫做褶皱。地壳发生褶皱隆起,常常形成山脉。世界许多高大的山脉,如喜马拉雅山、阿尔卑斯山、安第斯山等,都是褶皱山脉。它们是由地壳板块相互碰撞、挤压,在板块交界处发生大规模褶皱隆起而形成的。褶皱有背斜和向斜两种基本形态。背斜岩层一般向上拱起,向斜岩层一般向下弯曲。在地貌上,背斜常成为山岭,向斜常成为谷地或盆地。但是,不少褶皱构造的背斜顶部因受张力,容易被侵蚀成谷地,而向斜槽部受到挤压,岩性坚硬不易被侵蚀,反而成为山岭。 (二)断层壳运动产生的强大压力或张力,超过了岩石所能承受的程度,岩体就会破裂。岩体发生破裂,并且沿断裂面两侧岩块有明显的错动、位移,这叫做断层。在地貌上,大的断层常常形成裂谷或陡崖,如著名的东非大裂谷、我国华山北坡大断崖等。断层一侧上升的岩块,常成为块状山地或高地,如中国的华山、庐山、泰山;另一侧相对下沉的岩块,则常形成谷地或低地,如我国的渭河平原、汾河谷地。在断层构造地带,由于岩石破碎,易受风化侵蚀,常常发育成沟谷、河流。了解地质构造规律,对于找矿、找水、工程建设等有很大帮助。例如,含石油、天然气的岩层,背斜是良好的储油构造;向斜构造盆地,利于储存地下水,常形成自流盆地。在工程建设方面,如隧道工程通过断层时必须采取相应的工程加固措施,以免发生崩塌;水库等大型工程选址,应避开断层带,以免诱发断层活动,产生地震、滑坡、渗漏等不良后果。 § 地壳学说 地壳运动(一)收缩说:核心思想:地球最初是熔融体,逐渐冷却。冷却是从外表开始的。地壳最先冷却形成,而后地球内部逐渐冷却收缩后,体积变小,这时地壳就显得过大而发生褶皱。(如同干苹果一样,外皮皱)。存在问题:按这种理论,地壳上的褶皱分布应是随机的,但实事上褶皱的分布有一定的规律。尤其是放射性元素的发现,说明地球并非由热变冷却。否定了收缩论的观点。 (二)膨胀说核心思想:地球曾有很高温的时期,同时在地壳下部有一个膨胀层,由于膨胀层受热膨胀,使地壳裂开,解释了一些深大断裂、洋脊、裂谷的成因。存在问题:无法解释大规模挤压褶皱,逆掩断层的形成。而且膨胀性应具有宇宙性,其它星球尚无发现。 (三)脉动说核心思想:由于地球内部冷热交替,导致地壳周期性的振荡运动(脉动)受热隆起,冷却地区坳陷。存在问题:忽视了水平运动。同时没有冷、热交替的证据。 (四)地球自转速度变化说李四光提出:地球自转速度的变化导是致地壳运动的重要原因。核心思想:地质构造可分为走向东西向的纬向构造带。走向南北向的经向构造带。当地球自转加快时,由于离心力作用,地壳物质向赤道集中,相当于受到南北向的挤压,形成纬(东西向)构造带。相反地球自转减慢时,地壳物质从赤道向两极扩散,形成经向(南北向)构造带。 (五)地幔对流说板块构造理论所畅导的,最早由英国的霍尔姆斯提出。核心思想:地幔物质热对流,带动驮在其上的岩石圈水平运动。存在问题:地幔物质能否热对流。对流的范围和规模有多大。简而言之,这些观点只分析到了部分情况并没能分析到全部。以上这些观点长期共存正说明了一个问题,那就是人类没有找到真正的造山运动和海底扩张的原因。如果找到了,就不可能有多个相互矛盾的理论共存。 (六)大陆漂移说德国气象学家魏格纳(1880~1930)在1912年系统提出的一种大地构造假说。他认为古生代后期全球只有一个庞大的联合古陆,称“泛大陆”。中生代由于潮汐摩擦和从两极向赤道方向的挤压力,泛大陆开始分裂,较轻的花岗岩质大陆在较重的玄武岩质地幔上漂移,逐渐形成今日的海陆格局。他认为地球上的山脉也是大陆漂移的产物,科迪勒拉山和安第斯山是美洲大陆向西漂移滑动时,受到太平洋玄武质基底的阻挡,被挤压而形成的褶皱山脉;亚洲东缘的岛弧群,是大陆向西漂移过程中留下的残块;格陵兰的南端、佛罗里达、火地岛等弧形弯曲,都是向西滑动摩擦脱落的结果;东西向的阿尔卑斯山和喜马拉雅等各大山脉,是大陆从两极向赤道挤压的结果。魏格纳根据当时掌握的资料,从地质、地形、古生物、古气候和大地测量等方面,详细论证了大陆漂移说。这个假说当时引起了地质学界和地球物理学界的重视。但是对于大陆漂移的机制和规律,则有很多学者表示怀疑。20世纪50年代以来,古地磁学的研究表明,地质历史时期磁极的移动,只有用大陆漂移说才能得到合理的解释。因此大陆漂移说又获得了新生。 (七)板块构造学说1912年德国学者魏格纳提出了“大陆漂移假说”,1961年和1962年,美国的迪茨和赫茨提出了“海底扩张说”。在此基础上,1968年法国地质学家勒皮顺等人首创“板块构造学说”,现已成为最流行的地球科学新理论。板块构造学说将全球的岩石圈划分为六大板块:亚欧板块、非洲板块、美洲板块、太平洋板块、印度洋板块和南极洲板块,除六大板块外还有些小板块。大陆内部也可以划出一些次一级的板块。板块之间,分别以海峡或海沟、造山带为界。一般说来,板块内部地壳比较稳定;板块与板块交界处是地壳比较活动的地带,其活动性主要表现为地震、火山、张裂、错动、岩浆上升、地壳俯冲等。世界上的火山、地震活动,几乎都分布在板块的分界线附近。板块学说认为地壳是有生有灭的。由于海底扩张,大洋底部不断更新,大陆则只是随着海底的扩张而移动。板块在相对移动的过程中,或向两边张裂,或彼此碰撞,从而形成了地球表面的基本面貌。如3亿年前,欧、非两洲和南、北美洲相连,以后出现大西洋海岭,新的洋壳不断形成并以它为中轴向两边扩张,才使上述各洲分开。而在近7000万年以来,由于印度板块不断北移,与亚欧板块相撞,产生喜马拉雅山脉。东非大裂谷则正处于非洲大陆开始张裂,处于产生新洋壳的雏型期。红海亚丁湾则是两侧地壳张裂扩张的结果,处于大洋壳的幼年期。现在的地中海,则是代表大洋发展的终了期,它是广阔的古地中海经过长期演化后残留下来的海洋。关于板块的驱动力问题,有人认为是地幔对流,也有人认为是地幔中的“热点”和“热柱”把岩石圈拱起,而使其在重力作用下向下滑动推挤板块运动,还有其他的一些主张,目前尚无统一的认识。大陆漂移──海底扩张──板块构造,这是人类对地壳运动认识过程不断深化发展的三部曲。 § 形成产物 地壳运动地壳无时不在运动,但一般而言地壳运动速度缓慢,不易为人感觉。特别情况下,地壳运动可表现快速而激烈,那就是地震活动,并常常引发山崩、地陷、海啸。地壳运动按运动方向可分为升降(垂直)运动和水平运动。升降运动是相邻地块或同一块块不同部分作差异性上升或下降,使得某些地区成为高地或山岭,另一些地区成为盆地或凹陷。我国喜马拉雅山上埋藏着大量新生代早期的海洋生物化石,表明在几千万年前这里还是一片汪洋大海。深海钻探发现,印度洋底有白垩纪的煤层,说明1亿多年前这里还是大陆边缘上的沼泽。世界上许多地区近期都表现为升降运动。例如,大不列颠群岛、原苏联的北冰洋地带、南美西部沿海地区,以及北美东部哈得逊湾的拉布拉多半岛等地区均为上升区。地中海、英吉列海峡、墨西哥湾等为下降地区。我国的青藏高原、云贵高原以上升为主。华北平原、松辽平原等地则以下降为主。水平运动是指地壳块体在水平方向上移动,相邻地块或相互分离拉开,或相向靠拢挤压,或呈剪切错动。在剪切错动中相邻地块既不拉开,也不靠拢。现代水平运动最典型的例子就是美国加里福尼亚的圣安德列斯断层带。几年前,美国使用轨道卫星和激光束新技术来测定断层两盘的位移,数据表明,该断层自中新世以后,水平运动距离已达260千米。 由于地壳运动,使岩石原有的空间位置和形态发生改变(沉积岩、火山岩等岩层在其形成之初,基本上是水平产出的,而且在一定范围内是连续的)。岩层由水产变为倾斜或弯曲,连续的岩层被断开或错动,完整的岩体被破碎等,这种原生的形态和位置的改变,称为构造变形,变形的产物称为地质构造。最常见的地质构造为褶皱和断层。岩层的弯曲称为褶皱,褶皱的基本类型是背斜与向斜。背斜在形态上是向上拱的弯曲,中心部分为老地层,两翼岩层依次渐新。向斜是中部向下弯曲,中心部分为新地层,两翼岩层依次渐老。褶皱中,背斜与向斜常常是并存相依的。当然,背斜的上拱,向斜的下凹,并不一定与地形的高低一致,背斜可以形成山,也可以是低地;向斜可以是低地,但也可以构成山岭。岩石在受力作用后,当应力超过岩石的强度极限时,岩石就要发生破裂,沿破裂面两侧岩块发生显着相对位移的断裂构造称为断层。 断层的规模大小不等,大者沿走向延伸可达上千千米,向下可切穿地壳,常由计多断层组成,称为断裂带。小者位移仅几厘米。被错开的两部分岩石沿之滑动的破裂面叫做断层面,断层面可成水平的、倾斜的或直立的,以倾斜的最多。断层面两侧相对移动的岩块称为断盘。断层面是倾斜面时,断层面以上的断块叫上盘,断层面以下的断块叫下盘。断盘沿断裂面相对错开的距离叫断距。上盘相对下降,下盘相对上升的断层为正断层;上盘相对而言上升,下盘相对而言下降的断层为逆断层;两盘沿断层面走向相对水平移动的断层为平移断层。 § 外力对地壳的改造 地壳运动外力地质作用指的是风化作用、剥蚀作用、搬运作用、沉积作用和固结成岩作用等。1、风化作用是指在地表或接近地表的环境下,由于气温、空气、水及生物等作用,使地壳中的岩石、矿物在原地遭受分解和破坏的地质作用。风化作用使地表岩石变得松软或破碎。2、剥蚀作用是指地表的岩石和矿物,由于风化作用,可以使他们分解、破碎,在流水或风的作用下,将他们远离原地的作用。剥蚀作用在地表十分常见,它塑造了地表千姿百态的地貌形态,如风蚀作用可以形成蘑菇石,流水剥蚀作用可以形成沟、谷等。3、由松散的沉积物变为固结的沉积岩的过程称为成岩作用。各种沉积物最初都是松散的,在漫长的地质时期中,沉积物逐渐堆积,较新的沉积物覆盖在较老的沉积物之上,沉积物逐渐加厚,早期沉积物深埋在下,由于上面的沉积物的压力,下部沉积物逐渐被压实;同时由于孔隙水的溶解和沉淀作用,使颗粒互相胶结在一起;而且部分颗粒发生重结晶。最后,松散的沉积物固结成为岩石。沉积物经过成岩作用形成的岩石称为沉积岩。 § 参考资料 1、http://www.chinahhsl.com/keyanjiazhi/ShowArticle.asp?ArticleID=622 2、http://www.bjkp.gov.cn/kxbl/wzjg/gdnr/3/k0858-05.htm3 3、http://www.lrn.cn/science/geoknowledge/200705/t20070531_63568.htm |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。