词条 | 中心极限定理 |
释义 | 中心极限定理 central limit theorem 概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。概率论中最重要的一类定理,有广泛的实际应用背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象 。最早的中心极限定理是讨论n重伯努利试验中,事件A出现的次数渐近于正态分布的问题。1716年前后,A.棣莫弗对n重伯努利试验中每次试验事件A出现的概率为1/2的情况进行了讨论,随后,P.-S.拉普拉斯和A.M.李亚普诺夫等进行了推广和改进。自P.莱维在1919~1925年系统地建立了特征函数理论起,中心极限定理的研究得到了很快的发展,先后产生了普遍极限定理和局部极限定理等。极限定理是概率论的重要内容,也是数理统计学的基石之一,其理论成果也比较完美。长期以来,对于极限定理的研究所形成的概率论分析方法,影响着概率论的发展。同时新的极限理论问题也在实际中不断产生。 中心极限定理告诉我们:如果已知总体期望值为μ,方差为σ²,那么当样本量n很大时(n≥30),样本均值x-的抽样分布服从期望值为μ,方差为σ²/n的正态分布。 |
随便看 |
百科全书收录594082条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。