请输入您要查询的百科知识:

 

词条 PLD
释义

计算机硬件

简介

可编程逻辑器件PLD(programmable logic device) :PLD是做为一种通用集成电路生产的,他的逻辑功能按照用户对器件编程来决定。一般的PLD的集成度很高,足以满足设计一般的数字系统的需要。这样就可以由设计人员自行编程而把一个数字系统“集成”在一片PLD上,而不必去请芯片制造厂商设计和制作专用的集成电路芯片了。

发展历程

早期的可编程逻辑器件只有可编程只读存贮器(PROM)、紫外线可按除只读存贮器(EPROM)和电可擦除只读存贮器(EEPROM)三种。由于结构的限制,它们只能完成简单的数字逻辑功能。

其后,出现了一类结构上稍复杂的可编程芯片,即可编程逻辑器件,它能够完成各种数字逻辑功能。典型的PLD由一个“与”门和一个“或”门阵列组成,而任意一个组合逻辑都可以用“与一或”表达式来描述,所以, PLD能以乘积和的形式完成大量的组合逻辑功能。这一阶段的产品主要有PAL和GAL。PAL由一个可编程的“与”平面和一个固定的“或”平面构成,或门的输出可以通过触发器有选择地被置为寄存状态。PAL器件是现场可编程的,它的实现工艺有反熔丝技术、EPROM技术和EEPROM技术。还有一类结构更为灵活的逻辑器件是可编程逻辑阵列(PLA),它也由一个“与”平面和一个“或”平面构成,但是这两个平面的连接关系是可编程的。PLA器件既有现场可编程的,也有掩膜可编程的。在PAL的基础上,又发展了一种通用阵列逻辑GAL,如GAL16V8,GAL22V10 等。它采用了EEPROM工艺,实现了电可按除、电可改写,其输出结构是可编程的逻辑宏单元,因而它的设计具有很强的灵活性,至今仍有许多人使用。这些早期的PLD器件的一个共同特点是可以实现速度特性较好的逻辑功能,但其过于简单的结构也使它们只能实现规模较小的电路。为了弥补这一缺陷,20世纪80年代中期Altera和Xilinx分别推出了类似于PAL结构的扩展型 CPLD和与标准门阵列类似的FPGA,它们都具有体系结构和逻辑单元灵活、集成度高以及适用范围宽等特点。这两种器件兼容了PLD和通用门阵列的优点,可实现较大规模的电路,编程也很灵活。与门阵列等其它ASIC相比,它们又具有设计开发周期短、设计制造成本低、开发工具先进、标准产品无需测试、质量稳定以及可实时在线检验等优点,因此被广泛应用于产品的原型设计和产品生产(一般在10,000件以下)之中。几乎所有应用门阵列、PLD和中小规模通用数字集成电路的场合均可应用FPGA和CPLD器件。

分类

1、按集成度划分

(1)低集成度芯片。早起出现的PROM、PAL、可重复编程的GAL都属于这类,可重构使用的逻辑门数大约在500门以下,称为简单PLD。

(2)高集成度芯片。如现在大量使用的CPLD、FPGA器件,称为复杂PLD。

2、按结构划分

(1)乘积项结构器件。其基本结构为“与-或”阵列的器件,大部分简单PLD和CPLD都属于这个范畴。

(2)查找表结构器件。由简单的查找表组成可编程门,再构成阵列形式。大多数FPGA是属于此类器件。

3、按编程工艺划分

(1)熔丝型器件。早期的PROM器件就是采用熔丝结构的,编程过程是根据设计的熔丝图文件来烧断对应的熔丝,达到编程和逻辑构建的目的。

(2)反熔丝型器件。是对熔丝技术的改进,在编程处通过击穿漏层使得两点之间获得导通,这与熔丝烧断获得开路正好相反。

(3)EPROM型。称为紫外线擦除电可编程逻辑器件,是用较高的编程电压进行编程,当需要再次编程时,用紫外线进行擦除。

(4)EEPROM型。即电可擦写编程软件,现有部分CPLD及GAL器件采用此类结构。它是对EPROM的工艺改进,不需要紫外线擦除,而是直接用电擦除。

(5)SRAM型。即SRAM查找表结构的器件,大部分FPGA器件都采用此种编程工艺,如Xilinx和Altera的FPGA器件。这种方式在编程速度、编程要求上要优于前四种器件,不过SRAM型器件的编程信息存放在RAM中,在断电后就丢失了,再次上电需要再次编程(配置),因而需要专用的器件来完成这类配置操作。

(6)Flash型。Actel公司为了解决上述反熔丝器件的不足之处,推出了采用Flash工艺的FPGA,可以实现多次可编写,同时做到掉电后不需要重新配置,现在Xilinx和Altera的多个系列CPLD也采用Flash型。

组成

·一个二维的逻辑块阵列,构成了PLD器件的逻辑组成核心。

·输入/输出块:连接逻辑块的互连资源。

·连线资源:由各种长度的连线线段组成,其中也有一些可编程的连接开关,它们用于逻辑块之间、逻辑块与输入/输出块之间的连接。

制膜技术

简介

脉冲激光沉积(PLD)Pulsed Laser Deposition是近年来发展起来的使用范围最广,最有希望的制膜技术。

简单来说,脉冲激光沉积PLD(Pulsed Laser Deposition)就是脉冲激光光束聚焦在固体靶面上,激光超强的功率使得靶物质快速等离子化,然后溅镀到目标物上。

优点

1.由于激光光子能量很高,可溅射制备很多困难的镀层:如高温超导薄膜,陶瓷氧化物薄膜,多层金属薄膜等; PLD可以用来合成纳米管,纳米粉末等。

2.PLD可以非常容易的连续融化多个材料,实现多层膜制备。

3.PLD可以通过控制激光能量和脉冲数,精密的控制膜厚。

对激光器要求

1.尽可能避免热效应:激光波长越短,越容易实现“冷加工”所以193nm,248nm的准分子激光器和266nm,355nm的高次谐波ND:YAG固态激光器为客户所常用。

2.大能量,短脉冲创造超过靶材的阈值的功率密度。

3.比较高的重复频率,提升溅射速度。

4.激光器使用简单,寿命长,易于维护(这一点Nd:YAG固态激光器要好于准分子激光器)。

相关产品

激光光源部分:法国Quantel公司的脉冲Nd:YAG激光器, (链接)

推荐型号:

1.Brillant B 系列:即插即用型3倍频(355nm),4倍频(266nm)结构;用户使用方便,也是商用PLD系统OEM厂家的选择。

2.YG980系列:高能量输出,工作稳定,维护方便。是科研用PLD系统的首选。

测试系统部分:

1.等离子体光谱测试系统: 英国Andor公司,

2.真空腔残余气体分析仪:美国SRS公司 RGA200等

3.红外热像仪:美国Electrophysics公司 PV320等

PLD

PLD(Pulsed Laser Deposition)脉冲激光沉积,也被称为脉冲激光烧蚀(pulsed laser ablation,PLA),是一种利用激光对物体进行轰击,然后将轰击出来的物质沉淀在不同的衬底上,得到沉淀或者薄膜的一种手段。

历史背景

早于1916年,爱因斯坦(Albert Einstein)已提出受激发射作用的假设。可是,首部以红宝石棒为产生激光媒介的激光器,却要到1960年,才由梅曼(Theodore H. Maiman)在休斯实验研究所建造出来。总共相隔了44年。使用激光来熔化物料的历史,要追溯到1962年,布里奇(Breech)与克罗斯(Cross)利用红宝石激光器,汽化与激发固体表面的原子。三年后,史密斯(Smith)与特纳(Turner)利用红宝石激光器沉积薄膜,视为脉冲激光沉积技术发展的源头。

发展历程

不过,脉冲激光沉积的发展与探究,处处受制。事实上,当时的激光科技还未成熟,可以得到的激光种类有限;输出的激光既不稳定,重复频率亦太低,使任何实际的膜生成过程均不能付诸实行。因此,PLD在薄膜制作的发展比其它技术落后。以分子束外延(MBE)为例,制造出来的薄膜质素就优良得多。

往后十年,由于激光科技的急速发展,提升了PLD的竞争能力。与早前的红宝石激光器相比,当时的激光有较高的重复频率,使薄膜制作得以实现。随后,可靠的电子Q开关激光(electronic Q-switches lasers)面世,能够产生极短的激光脉冲。因此,PLD能够用来做到将靶一致蒸发,并沉积出化学计量薄膜。由于紫外线辐射,薄膜受吸收的深度较浅。之后发展出来的高效谐波激光器(harmonic generator)与激基分子激光器(excimer)甚至可产生出强烈的紫外线辐射。自此以后,以非热能激光熔化靶物质变得极为有效。

自1987年成功制作高温的Tc超导膜开始,用作膜制造技术的脉冲激光沉积获得普遍赞誉,并吸引了广泛的注意。过去十年,脉冲激光沉积已用来制作具备外延特性的晶体薄膜。陶瓷氧化物(ceramic oxide)、氮化物膜(nitride films)、金属多层膜(metallic multilayers),以及各种超晶格(superlattices)都可以用PLD来制作。近来亦有报告指出,利用PLD可合成纳米管(nanotubes)、纳米粉末(nanopowders),以及量子点(quantum dots)。关于复制能力、大面积递增及多级数的相关生产议题,亦已经有人开始讨论。因此,薄膜制造在工业上可以说已迈入新纪元。

PLD的机制

PLD的系统设备简单,相反,它的原理却是非常复杂的物理现象。它涉及高能量脉冲辐射冲击固体靶时,激光与物质之间的所有物理相互作用,亦包括等离子羽状物的形成,其后已熔化的物质通过等离子羽状物到达已加热的基片表面的转移,及最后的膜生成过程。所以,PLD一般可以分为以下四个阶段:

1. 激光辐射与靶的相互作用

2. 熔化物质的动态

3. 熔化物质在基片的沉积

4. 薄膜在基片表面的成核(nucleation)与生成

PLD主要优点

1. 易获得期望化学计量比的多组分薄膜,即具有良好的保成分性;

2. 沉积速率高,试验周期短,衬底温度要求低,制备的薄膜均匀;

3. 工艺参数任意调节,对靶材的种类没有限制;

4. 发展潜力巨大,具有极大的兼容性;

5. 便于清洁处理,可以制备多种薄膜材料。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 5:49:37