词条 | 康托尔集 |
释义 | 康托尔集在数学中,康托尔集,由德国数学家格奥尔格·康托尔在1883年引入(但由亨利·约翰·斯蒂芬·史密斯在1875年发现),是位于一条线段上的一些点的集合,具有许多显著和深刻的性质。通过考虑这个集合,康托尔和其他数学家奠定了现代点集拓扑学的基础。虽然康托尔自己用一种一般、抽象的方法定义了这个集合,但是最常见的构造是康托尔三分点集,由去掉一条线段的中间三分之一得出。康托尔自己只附带介绍了三分点集的构造,作为一个更加一般的想法——一个无处稠密的完备集的例子。 实际上斯梅尔的马蹄映射也会形成康托尔集。 康托三分集中有无穷多个点,所有的点处于非均匀分布状态。此点集具有自相似性,其局部与整体是相似的,所以是一个分形系统, 康托三分集具有(1)自相似性;(2)精细结构;(3)无穷操作或迭代过程;(4)传统几何学陷入危机。用传统的几何学术语难以描述,它既不满足某些简单条件如点的轨迹,也不是任何简单方程的解集。其局部也同样难于描述。因为每一点附近都有大量被各种不同间隔分开的其它点存在。(5)长度为零;(6)简单与复杂的统一。 取一条长度为1的直线段,将它三等分,去掉中间一段,留剩下两段,再将剩下的两段再分别三等分,各去掉中间一段,剩下更短的四段,……,将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的点集,称为康托尔点集,记为P。称为康托尔点集的极限图形长度趋于0,线段数目趋于无穷,实际上相当于一个点集。操作n次后 边长r=(2/3)n, 边数N(r)=2 n, 根据公式N(r)=1/rD,2 n=3Dr,D=ln2/ln3=0.631。 所以康托尔点集分数维是0.631。 康托尔集P具有三条性质: 1、P是完备集。2、P没有内点。3、P的基数为c。 康托尔集是一个基数为c的疏朗完备集。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。